limited_power_solar.py 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. import pandas as pd
  2. import os
  3. import numpy as np
  4. np.random.seed(42)
  5. import matplotlib
  6. matplotlib.use('Agg')
  7. import matplotlib.pyplot as plt
  8. current_path = os.path.dirname(__file__)
  9. class LimitPower(object):
  10. def __init__(self, logger, args, weather, power):
  11. self.logger = logger
  12. self.args = args
  13. self.opt = self.args.parse_args_and_yaml()
  14. self.weather_power = pd.merge(weather, power, on='C_TIME')
  15. def segment_statis(self):
  16. """
  17. 对总辐射-实际功率进行分段处理,获取分度的中位点,四分位间距和斜率
  18. :return: glob_rp 总辐射分段
  19. """
  20. segs = [x for x in range(50, 2000, 100)] # 对辐照度以100为间隔进行分段
  21. xs = [segs[i-1]+x if i>0 else 25 for i, x in enumerate([50 for _ in segs])] # 分段的中间点
  22. glob_rp = {} # dict: key 辐照度分段中间点 value 分段内的实际功率
  23. for index, row in self.weather_power.iterrows():
  24. glob_ = row[self.opt.usable_power["env"]]
  25. rp = row['C_REAL_VALUE']
  26. for i, seg in enumerate(segs):
  27. if glob_ <= seg and not (i > 0 and rp < 1):
  28. glob_rp.setdefault(xs[i], []).append(rp)
  29. break
  30. for i, x in enumerate(xs):
  31. rps = glob_rp.get(x)
  32. if rps is None:
  33. glob_rp = {k: v for k, v in glob_rp.items() if k not in xs[xs.index(x):]}
  34. break
  35. x_l = xs[i-1] if i > 0 else 0
  36. q2_l = glob_rp[xs[i-1]][0] if i > 0 else 0
  37. q1 = np.percentile(rps, self.opt.usable_power['down_fractile']) # 实际功率下四分位点
  38. q2 = np.percentile(rps, 50) # 实际功率中位点
  39. q3 = np.percentile(rps, self.opt.usable_power['up_fractile']) # 实际功率上四分位点
  40. iqr = q3 -q1 # 四分位间距
  41. k1 = round(q2/x, 5) # 整体斜率
  42. k2 = round((q2-q2_l)/(x-x_l), 5) # 趋势斜率,相对上一个中位点
  43. glob_rp[x] = [q2, iqr, k1, k2] # 更新dict
  44. return glob_rp
  45. def mapping_relation(self, glob_rp):
  46. """
  47. 拟合分段处理后的斜率和偏移量
  48. :param glob_rp: 总辐射分段
  49. :return: k_final 斜率 bias 实际功率的分布宽度, glob_rp 总辐射分段
  50. """
  51. ks, iqrs, delete_x, tag_x = [], [], [], [] # ks所有分段斜率集合,iqrs所有分段间距集合,delete_x删除的x坐标集合
  52. for x, values in glob_rp.items():
  53. k1 = values[-2]
  54. k2 = values[-1]
  55. iqrs.append(values[-3])
  56. if k1 > 0 and k2 > 0: # 清除趋势小于等于0的斜率
  57. ks.append(k1)
  58. tag_x.append(x)
  59. else:
  60. delete_x.append(x)
  61. # print("删除的斜率:", k1, k2)
  62. bias = round(np.median(iqrs), 3) # 中位点
  63. # print("++++1", ks)
  64. mean = np.mean(ks) # 均值
  65. std = np.std(ks) # 标准差
  66. ks = np.array(ks)
  67. z_score = (ks-mean)/std # z均值
  68. # print("----", z_score)
  69. outliers = np.abs(z_score) > self.opt.usable_power['outliers_threshold'] # 超过阈值为离群点
  70. ks = ks[~outliers] # 消除离群点
  71. delete_x1 = list(np.array(tag_x)[outliers]) # 清除大于阈值的离群点
  72. k_final = round(np.mean(ks), 5) # 对清洗后的斜率做平均
  73. # print("++++2:", ks)
  74. delete_x.extend(delete_x1)
  75. self.logger.info("拟合可用功率,删除的斜率:" + ' '.join([str(x) for x in delete_x]))
  76. glob_rp = {k: v for k, v in glob_rp.items() if k not in delete_x} # 清洗后剩下的分段点位
  77. return k_final, bias, glob_rp
  78. def filter_unlimited_power(self, zfs, real_power, k, b):
  79. """
  80. 预测可用功主方法
  81. :param zfs: 要预测可用功率的总辐射
  82. :param k: 斜率
  83. :param b: 偏移量
  84. :return: 预测的可用功率
  85. """
  86. high = k*zfs+b/2 if k*zfs+b/2 < self.opt.cap else self.opt.cap
  87. low = k*zfs-b/2 if k*zfs-b/2 > 0 else 0
  88. if low <= real_power <= high:
  89. return True
  90. else:
  91. return False
  92. def clean_limited_power(self, name, signal=False):
  93. glob_rp = self.segment_statis()
  94. k_final, bias, glob_rp = self.mapping_relation(glob_rp)
  95. self.opt.usable_power['k'] = float(k_final)
  96. self.opt.usable_power['bias'] = float(bias)
  97. new_weather_power = []
  98. for index, row in self.weather_power.iterrows():
  99. zfs = row[self.opt.usable_power["env"]]
  100. rp = row['C_REAL_VALUE']
  101. s = int(row['signal']) if signal is True else 2
  102. if self.filter_unlimited_power(zfs, rp, k_final, bias * self.opt.usable_power['coe']):
  103. row['c'] = 'red' if s == 0 or s == 2 else 'cornflowerblue'
  104. new_weather_power.append(row)
  105. else:
  106. row['c'] = 'blue' if s == 1 or s == 2 else 'pink'
  107. new_weather_power.append(row)
  108. new_weather_power = pd.concat(new_weather_power, axis=1).T
  109. new_weather_power.plot.scatter(x=self.opt.usable_power["env"], y='C_REAL_VALUE', c='c')
  110. plt.savefig(current_path + '/figs/限电{}.png'.format(name))
  111. new_weather_power = new_weather_power[new_weather_power['c'] == 'red']
  112. number = len(new_weather_power)
  113. self.logger.info("未清洗限电前,总共有:{}条数据".format(len(self.weather_power)))
  114. self.logger.info("清除限电后保留的点有:" + str(number) + " 占比:" + str(round(number / len(self.weather_power), 2)))
  115. self.args.save_args_yml(self.opt)
  116. return new_weather_power.loc[:, ['C_TIME', 'C_REAL_VALUE', 'C_ABLE_VALUE']]
  117. def clean_limited_power_by_signal(self):
  118. # powers = self.weather_power.copy()
  119. self.weather_power["signal"] = self.weather_power.apply(lambda x: self.signal_result(x["C_IS_RATIONING_BY_MANUAL_CONTROL"], x["C_IS_RATIONING_BY_AUTO_CONTROL"]), axis=1)
  120. # powers['c'] = self.weather_power.apply(lambda x: 'blue' if bool(x["signal"]) is True else 'red', axis=1)
  121. # self.weather_power.plot.scatter(x=self.opt.usable_power["env"], y='C_REAL_VALUE', c='c')
  122. # plt.savefig(current_path + '/figs/限电.png')
  123. # return powers
  124. new_weather_power = self.weather_power[self.weather_power['signal'] == False]
  125. return new_weather_power.loc[:, ['C_TIME', 'C_REAL_VALUE', 'C_ABLE_VALUE']]
  126. def signal_result(self, manual, auto):
  127. if int(manual) == 0:
  128. if int(auto) == 0:
  129. return False
  130. else:
  131. return True
  132. else:
  133. if int(auto) == 1:
  134. return True
  135. else:
  136. return False
  137. if __name__ == '__main__':
  138. power = pd.read_csv('2023-12-01至2023-12-23实际功率导出文件.csv', date_parser=['时间'])
  139. weather = pd.read_csv('2023-12-01至2023-12-23气象站数据导出文件.csv', date_parser=['时间'])
  140. weather_power = pd.merge(weather, power, on='时间') # 联立数据
  141. # glob_rp = segment_statis(weather_power)
  142. # k_final, bias, glob_rp = mapping_relation(glob_rp)