123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393 |
- import pymysql
- import pandas as pd
- import numpy as np
- from sqlalchemy import create_engine
- import matplotlib.pyplot as plt
- import pytz
- plt.rcParams['font.sans-serif'] = ['SimHei']
- import utils.savedata
- from utils import Arg
- arg = Arg.Arg()
- def clear_data():
- """
- 删除所有csv
- :return:
- """
- # 设置文件夹路径
- import glob
- import os
- folder_path = arg.dataloc
- # 使用 glob 获取所有的 .csv 文件路径
- csv_files = glob.glob(os.path.join(folder_path, '**/*.csv'), recursive=True)
- # 遍历所有 .csv 文件并删除
- for file_path in csv_files:
- os.remove(file_path)
- print("清除所有scv文件")
- def create_database(database):
- """
- 创建数据库连接
- :param database: 数据库地址
- :return:
- """
- engine = create_engine(database)
- return engine
- def exec_sql(sql,engine):
- """
- 从数据库获取数据
- :param sql: sql语句
- :param engine: 数据库对象
- :return:
- """
- df = pd.read_sql_query(sql, engine)
- return df
- def get_process_NWP(database):
- """
- 从数据库中获取NWP数据,并进行简单处理
- :param database:
- :return:
- """
- # NPW数据
- engine = create_database(database)
- sql_NWP = "select C_PRE_TIME,C_T,C_RH,C_PRESSURE,C_WD10,C_WD30,C_WD50,C_WD70,C_WD80,C_WD90,C_WD100,C_WD170,C_WS10,C_WS30,C_WS50,C_WS70,C_WS80,C_WS90,C_WS100,C_WS170 from t_nwp"
- NWP = exec_sql(sql_NWP, engine)
- #删除后三位
- NWP['C_PRE_TIME'] = NWP['C_PRE_TIME'].astype(str)
- NWP['C_PRE_TIME'] = NWP['C_PRE_TIME'].str[:-3]
- # 将 'timestamp' 列转换为日期时间格式
- NWP['C_PRE_TIME'] = NWP['C_PRE_TIME'].astype(float)
- NWP['C_PRE_TIME'] = pd.to_datetime(NWP['C_PRE_TIME'], unit='s')
- # 将日期时间转换为本地时区
- NWP['C_PRE_TIME'] = NWP['C_PRE_TIME'].dt.tz_localize(pytz.utc).dt.tz_convert('Asia/Shanghai')
- # 格式化日期时间为年月日时分秒
- NWP['C_PRE_TIME'] = NWP['C_PRE_TIME'].dt.strftime('%Y-%m-%d %H:%M:%S')
- NWP = NWP.rename(columns={'C_PRE_TIME': 'C_TIME'})
- utils.savedata.saveData("NWP.csv",NWP)
- return NWP
- def get_process_turbine(database):
- """
- 从数据库中获取风头数据,并进行简单处理
- :param database:
- :return:
- """
- # 获取NWP数据
- NWP = utils.savedata.readData("NWP.csv")
- NWP_date = NWP.iloc[:,0]
- print(NWP_date)
- # 机头数据
- engine = create_database(database)
- for i in arg.turbineloc:
- print("导出风机{}的数据".format(i))
- sql_turbine = "select C_TIME,C_DATA1 as C_WS, C_DATA2 as C_WD, C_DATA3 as C_ACTIVE_POWER from t_wind_turbine_status_data WHERE C_EQUIPMENT_NO=" + str(i) + " and C_DATA1 != -99 AND C_DATA1 != 0" #+ " and C_WS>0 and C_ACTIVE_POWER>0"
- turbine = exec_sql(sql_turbine, engine)
- #直接导出所有数据
- utils.savedata.saveData("turbine-all/turbine-{}.csv".format(i), turbine)
- #每15分钟导出一个数据
- filtered_df = turbine[turbine['C_TIME'].isin(NWP_date)]
- utils.savedata.saveData("turbine-15/turbine-{}.csv".format(i), filtered_df)
- def get_process_tower(database):
- """
- 获取测风塔数据
- :param database:
- :return:
- """
- engine = create_database(database)
- print("现有测风塔:{}".format(arg.towerloc))
- for i in arg.towerloc:
- print("测风塔{}导出数据".format(i))
- # 删除没用的列
- drop_colmns = ["C_DATA1","C_DATA2","C_DATA3","C_DATA4","C_DATA5","C_DATA6","C_DATA7","C_DATA8","C_DATA9","C_DATA10","C_IS_GENERATED","C_ABNORMAL_CODE"]
- get_colmns = []
- # 查询表的所有列名
- result_set = exec_sql("SHOW COLUMNS FROM t_wind_tower_status_data", engine)
- for name in result_set.iloc[:,0]:
- if name not in drop_colmns:
- get_colmns.append(name)
- all_columns_str = ", ".join([f'{col}' for col in get_colmns])
- tower_sql = "select " + all_columns_str + " from t_wind_tower_status_data where C_EQUIPMENT_NO="+str(i)
- tower = exec_sql(tower_sql, engine)
- utils.savedata.saveData("tower/tower-{}.csv".format(i), tower)
- def get_process_power(database):
- """
- 获取整体功率数据
- :param database:
- :return:
- """
- engine = create_database(database)
- sql_power = "select C_TIME,C_REAL_VALUE from t_power_station_status_data"
- power = exec_sql(sql_power, engine)
- utils.savedata.saveData("power.csv", power)
- def get_process_dq(database):
- """
- 获取短期预测结果
- :param database:
- :return:
- """
- engine = create_database(database)
- sql_dq = "select C_FORECAST_TIME AS C_TIME, C_ABLE_VALUE from t_forecast_power_short_term_his"
- dq = exec_sql(sql_dq, engine)
- dq['C_TIME'] = pd.to_datetime(dq['C_TIME'], unit='ms')
- utils.savedata.saveData("dq.csv", dq)
- def get_process_cdq(database):
- """
- 获取超短期预测结果
- :param database:
- :return:
- """
- engine = create_database(database)
- sql_cdq = "select C_FORECAST_TIME AS C_TIME, C_ABLE_VALUE from t_forecast_power_ultra_short_term_his"
- cdq = exec_sql(sql_cdq, engine)
- cdq['C_TIME'] = cdq['C_TIME'].dt.strftime('%Y-%m-%d %H:%M:%S')
- utils.savedata.saveData("cdq.csv", cdq)
- def get_turbine_info(database):
- """
- 获取风机信息
- :param database:
- :return:
- """
- engine = create_engine(database)
- sql_turbine = "select C_ID, C_LATITUDE as '纬度', C_LONGITUDE as '经度', C_HUB_HEIGHT as '轮毂高度' from t_wind_turbine_info"
- turbine_info = exec_sql(sql_turbine, engine)
- utils.savedata.saveData("风机信息.csv", turbine_info)
- def indep_process():
- """
- 进一步数据处理:时间统一处理等
- :return:
- """
- # 测风塔数据处理
- for i in arg.towerloc:
- tower = utils.savedata.readData("/tower/tower-{}.csv".format(i))
- # 判断每一列是否全是 -99
- all_minus_99 = (tower == -99).all()
- # 获取全是 -99 的列的列名
- cols_to_drop = all_minus_99[all_minus_99 == True].index.tolist()
- # 使用 drop() 方法删除列
- tower = tower.drop(cols_to_drop, axis=1)
- # MBD: 将一部分是-99的列删除,把-99替换为nan
- tower_nan = tower.replace(-99, np.nan, inplace=False)
- # nan 超过80% 删除
- tower = tower.dropna(axis=1, thresh=len(tower_nan) * 0.8)
- utils.savedata.saveData("/tower/tower-{}-process.csv".format(i), tower)
- # 测风塔时间统一
- tower1 = utils.savedata.readData("/tower/tower-{}-process.csv".format(1))
- # tower2 = utils.savedata.readData("/tower/tower-{}-process.csv".format(2))
- # tower1 = tower1[tower1['C_TIME'].isin(tower2['C_TIME'])]
- # tower2 = tower2[tower2['C_TIME'].isin(tower1['C_TIME'])]
- utils.savedata.saveData("/tower/tower-{}-process.csv".format(1), tower1)
- # utils.savedata.saveData("/tower/tower-{}-process.csv".format(2), tower2)
- # 所有表时间统一
- filenames = ["/NWP.csv","/power.csv", "/dq.csv", "/cdq.csv", '/tower/tower-1-process.csv']
- dataframes = []
- for i in arg.turbineloc:
- filenames.append("/turbine-15/turbine-{}.csv".format(i))
- for name in filenames:
- dataframes.append(utils.savedata.readData(name))
- # 查找最大起始时间和最小结束时间
- max_start_time = max(df['C_TIME'].min() for df in dataframes)
- min_end_time = min(df['C_TIME'].max() for df in dataframes)
- print(max_start_time)
- print(min_end_time)
- # 重新调整每个 DataFrame 的时间范围,只保留在 [max_start_time, min_end_time] 区间内的数据
- for i, df in enumerate(dataframes):
- df['C_TIME'] = pd.to_datetime(df['C_TIME']) # 确保时间列是 datetime 类型
- df_filtered = df[(df['C_TIME'] >= max_start_time) & (df['C_TIME'] <= min_end_time)]
- # 将结果保存到新文件,文件名为原文件名加上 "_filtered" 后缀
- utils.savedata.saveData(filenames[i],df_filtered)
- def NWP_indep_process():
- """
- 将NWP数据按照缺失值数量划分为N个不同数据集
- :return:
- """
- # NWP数据进一步处理
- NWP = utils.savedata.readData("NWP.csv")
- df = pd.to_datetime(NWP['C_TIME'])
- time_diff = df.diff()
- time_diff_threshold = pd.Timedelta(minutes=15)
- missing_values = df[time_diff > time_diff_threshold]
- print("NWP数据缺失的数量为:{}".format(len(missing_values)))
- print(missing_values)
- # 文件保存
- utils.savedata.saveVar("NWP_miss.pickle", missing_values)
- split_indices = []
- for i in range(len(missing_values)):
- if i == 0:
- split_indices.append((0, missing_values.index[i]))
- else:
- split_indices.append((missing_values.index[i - 1], missing_values.index[i]))
- split_indices.append((missing_values.index[-1], len(df))) # MBD: 分割少了一个点
- split_datasets = [NWP.iloc[start:end,:] for start, end in split_indices]
- for i, split_df in enumerate(split_datasets):
- utils.savedata.saveData("Dataset_training/NWP/NWP_{}.csv".format(i),split_df)
- return split_datasets
- # def power_indep_process():
- # NWP = utils.savedata.readData("power.csv")
- def Data_split():
- """
- 这个函数没用上,可以不看
- :return:
- """
- NWP = utils.savedata.readData("power_15min.csv")
- df = pd.to_datetime(NWP['C_TIME'])
- time_diff = df.diff()
- time_diff_threshold = pd.Timedelta(minutes=15)
- missing_values = df[time_diff > time_diff_threshold]
- print("NWP数据缺失的数量为:{}".format(len(missing_values)))
- print(missing_values)
- NWP_miss = utils.savedata.readVar("NWP_miss.pickle")
- for t in missing_values.index:
- a = t-1
- b = t
- time1 = NWP['C_TIME'][a]
- time2 = NWP['C_TIME'][b]
- df = pd.to_datetime([time1, time2])
- # 计算时间差
- time_diff = (df[1] - df[0]) / pd.Timedelta(minutes=15)
- print(time_diff)
- time1 = "2022-10-27 14:00:00"
- time2 = "2023-04-16 12:00:00"
- df = pd.to_datetime([time1, time2])
- # 计算时间差
- time_diff = (df[1] - df[0]) / pd.Timedelta(minutes=15)
- print(time_diff)
- def time_all_in():
- """
- 这个函数暂时没用上,这个函数的目的是给机头数据进行填充,找到时间缺失的位置,填充为-99
- :return:
- """
- filenames = []
- dataframes = []
- for i in arg.turbineloc:
- filenames.append("/turbine-15/turbine-{}.csv".format(i))
- for name in filenames:
- dataframes.append(utils.savedata.readData(name))
- for df in dataframes:
- df['C_TIME'] = pd.to_datetime(df['C_TIME'])
- # 创建一个完整的时间序列索引,包括所有可能的时间点
- start_time = df['C_TIME'].min()
- end_time = df['C_TIME'].max()
- full_time_range = pd.date_range(start_time, end_time, freq='15min')
- # 使用完整的时间序列索引创建一个空的 DataFrame
- full_df = pd.DataFrame(index=full_time_range)
- full_df.index.name = 'C_TIME'
- # 将原始数据与空的 DataFrame 合并
- merged_df = full_df.merge(df, how='left', left_on='time', right_on='time')
- # 使用 -99 填充缺失值,除了时间列
- merged_df.fillna(-99, inplace=True)
- merged_df.reset_index(inplace=True)
- def data_process(database):
- """
- 数据导出+初步处理的总操控代码
- :param database:
- :return:
- """
- clear_data()
- get_process_NWP(database)
- get_process_turbine(database)
- get_turbine_info(database)
- get_process_tower(database)
- get_process_power(database)
- get_process_dq(database)
- get_process_cdq(database)
- indep_process()
- NWP_indep_process()
- # Data_split()
- if __name__ == '__main__':
- import os
- import glob
- # 设置文件夹路径
- folder_path = '../data'
- # 使用 glob 获取所有的 .csv 文件
- csv_files = glob.glob(os.path.join(folder_path, '*.csv'))
- # 遍历所有 .csv 文件并删除
- for file_path in csv_files:
- os.remove(file_path)
- # database = "mysql+pymysql://root:!QAZ2root@192.168.1.205:3306/ipfcst-sishui-a"
- # engine = create_database(database)
- #
- # # NPW数据
- # sql_NWP = "select C_SC_DATE,C_SC_TIME,C_T,C_RH,C_PRESSURE,C_WD10,C_WD30,C_WD50,C_WD70,C_WD80,C_WD90,C_WD100,C_WD170,C_WS10,C_WS30,C_WS50,C_WS70,C_WS80,C_WS90,C_WS100,C_WS170 from t_nwp"
- # NWP = exec_sql(sql_NWP,engine)
- #
- # # 分风机功率
- # sql_wind = "select C_WS,C_ACTIVE_POWER from t_wind_turbine_status_data_15 WHERE C_EQUIPMENT_NO=2 and C_WS>0 and C_ACTIVE_POWER>0 "
- # df_wind = exec_sql(sql_wind,engine)
- # print(df_wind)
- # 总功率数据读取
- # sql_power = "select * from t_power_station_status_data"
- # df_power = exec_sql(sql_power, engine)
- filenames = []
- dataframes = []
- for i in arg.turbineloc:
- filenames.append("../data/turbine-15/turbine-{}.csv".format(i))
- for name in filenames:
- dataframes.append(pd.read_csv(name).iloc[:7000,:])
- # for df in enumerate(dataframes):
- # df =
- mean_of_first_columns = pd.concat([df['C_WS'] for df in dataframes], axis=1).mean(axis=1)
- mean_of_second_columns = (pd.concat([df['C_ACTIVE_POWER'] for df in dataframes], axis=1).sum(axis=1)/1000).astype(int)
- print(len(mean_of_first_columns))
- plt.scatter(mean_of_first_columns, mean_of_second_columns)
- plt.show()
|