inputData.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291
  1. import pandas as pd
  2. import datetime, time
  3. import pytz
  4. from savedata import saveData, readData
  5. import os
  6. from sqlalchemy import create_engine
  7. import pytz
  8. from data_cleaning import cleaning, rm_duplicated
  9. current_path = os.path.dirname(__file__)
  10. dataloc = current_path + '/data/'
  11. def readData(name):
  12. """
  13. 读取数据
  14. :param name: 名字
  15. :return:
  16. """
  17. path = dataloc + r"/" + name
  18. return pd.read_csv(path)
  19. def saveData(name, data):
  20. """
  21. 存放数据
  22. :param name: 名字
  23. :param data: 数据
  24. :return:
  25. """
  26. path = dataloc + r"/" + name
  27. os.makedirs(os.path.dirname(path), exist_ok=True)
  28. data.to_csv(path, index=False)
  29. def timestamp_to_datetime(ts):
  30. local_timezone = pytz.timezone('Asia/Shanghai')
  31. if type(ts) is not int:
  32. raise ValueError("timestamp-时间格式必须是整型")
  33. if len(str(ts)) == 13:
  34. dt = datetime.datetime.fromtimestamp(ts/1000, tz=pytz.utc).astimezone(local_timezone)
  35. return dt
  36. elif len(str(ts)) == 10:
  37. dt = datetime.datetime.fromtimestamp(ts, tz=pytz.utc).astimezone(local_timezone)
  38. return dt
  39. else:
  40. raise ValueError("timestamp-时间格式错误")
  41. def timestr_to_timestamp(time_str):
  42. """
  43. 将时间戳或时间字符串转换为datetime.datetime类型
  44. :param time_data: int or str
  45. :return:datetime.datetime
  46. """
  47. if isinstance(time_str, str):
  48. if len(time_str) == 10:
  49. dt = datetime.datetime.strptime(time_str, '%Y-%m-%d')
  50. return int(round(time.mktime(dt.timetuple())) * 1000)
  51. elif len(time_str) in {17, 18, 19}:
  52. dt = datetime.datetime.strptime(time_str, '%Y-%m-%d %H:%M:%S') # strptime字符串解析必须严格按照字符串中的格式
  53. return int(round(time.mktime(dt.timetuple())) * 1000) # 转换成毫秒级的时间戳
  54. else:
  55. raise ValueError("时间字符串长度不满足要求!")
  56. else:
  57. return time_str
  58. class DataBase(object):
  59. def __init__(self, begin, end, database):
  60. self.begin = begin
  61. self.end = end - pd.Timedelta(minutes=15)
  62. self.begin_stamp = timestr_to_timestamp(str(begin))
  63. self.end_stamp = timestr_to_timestamp(str(self.end))
  64. self.database = database
  65. self.towerloc = [1]
  66. def clear_data(self):
  67. """
  68. 删除所有csv
  69. :return:
  70. """
  71. # 设置文件夹路径
  72. import glob
  73. import os
  74. folder_path = dataloc
  75. # 使用 glob 获取所有的 .csv 文件路径
  76. csv_files = glob.glob(os.path.join(folder_path, '**/*.csv'), recursive=True)
  77. # 遍历所有 .csv 文件并删除
  78. for file_path in csv_files:
  79. os.remove(file_path)
  80. print("清除所有csv文件")
  81. def create_database(self):
  82. """
  83. 创建数据库连接
  84. :param database: 数据库地址
  85. :return:
  86. """
  87. engine = create_engine(self.database)
  88. return engine
  89. def exec_sql(self, sql, engine):
  90. """
  91. 从数据库获取数据
  92. :param sql: sql语句
  93. :param engine: 数据库对象
  94. :return:
  95. """
  96. df = pd.read_sql_query(sql, engine)
  97. return df
  98. def split_time(self, data):
  99. data.set_index('C_TIME', inplace=True)
  100. data = data.sort_index().loc[self.begin: self.end]
  101. data.reset_index(drop=False, inplace=True)
  102. return data
  103. def get_process_NWP(self):
  104. """
  105. 从数据库中获取NWP数据,并进行简单处理
  106. :param database:
  107. :return:
  108. """
  109. # NPW数据
  110. engine = self.create_database()
  111. sql_NWP = "select C_PRE_TIME,C_T,C_RH,C_PRESSURE, C_SWR," \
  112. "C_DIFFUSE_RADIATION, C_DIRECT_RADIATION, " \
  113. "C_WD10,C_WD30,C_WD50,C_WD70,C_WD80,C_WD90,C_WD100,C_WD170," \
  114. "C_WS10,C_WS30,C_WS50,C_WS70,C_WS80,C_WS90,C_WS100,C_WS170 from t_nwp" \
  115. " where C_PRE_TIME between {} and {}".format(self.begin_stamp, self.end_stamp) # 风的NWP字段
  116. NWP = self.exec_sql(sql_NWP, engine)
  117. NWP['C_PRE_TIME'] = NWP['C_PRE_TIME'].apply(timestamp_to_datetime)
  118. NWP = NWP.rename(columns={'C_PRE_TIME': 'C_TIME'})
  119. NWP = cleaning(NWP, 'NWP')
  120. # NWP = self.split_time(NWP)
  121. NWP['C_TIME'] = NWP['C_TIME'].dt.strftime('%Y-%m-%d %H:%M:%S')
  122. saveData("NWP.csv", NWP)
  123. return NWP
  124. def get_process_tower(self):
  125. """
  126. 获取环境检测仪数据
  127. :param database:
  128. :return:
  129. """
  130. engine = self.create_database()
  131. print("提取测风塔:{}".format(self.towerloc))
  132. for i in self.towerloc:
  133. # 删除没用的列
  134. drop_colmns = ["C_DATA1","C_DATA2","C_DATA3","C_DATA4","C_DATA5","C_DATA6","C_DATA7","C_DATA8","C_DATA9","C_DATA10","C_IS_GENERATED","C_ABNORMAL_CODE"]
  135. get_colmns = []
  136. # 查询表的所有列名
  137. result_set = self.exec_sql("SHOW COLUMNS FROM t_wind_tower_status_data", engine)
  138. for name in result_set.iloc[:, 0]:
  139. if name not in drop_colmns:
  140. get_colmns.append(name)
  141. all_columns_str = ", ".join([f'{col}' for col in get_colmns])
  142. tower_sql = "select " + all_columns_str + " from t_wind_tower_status_data where C_EQUIPMENT_NO="+str(i) + " and C_TIME between '{}' and '{}'".format(self.begin, self.end)
  143. tower = self.exec_sql(tower_sql, engine)
  144. tower['C_TIME'] = pd.to_datetime(tower['C_TIME'])
  145. saveData("/tower-{}.csv".format(i), tower)
  146. print("测风塔{}导出数据".format(i))
  147. def get_process_power(self):
  148. """
  149. 获取整体功率数据
  150. :param database:
  151. :return:
  152. """
  153. engine = self.create_database()
  154. sql_cap = "select C_CAPACITY from t_electric_field"
  155. cap = self.exec_sql(sql_cap, engine)['C_CAPACITY']
  156. sql_power = "select C_TIME,C_REAL_VALUE, C_ABLE_VALUE, C_IS_RATIONING_BY_MANUAL_CONTROL, C_IS_RATIONING_BY_AUTO_CONTROL" \
  157. " from t_power_station_status_data where C_TIME between '{}' and '{}'".format(self.begin, self.end)
  158. # if self.opt.usable_power["clean_power_by_signal"]:
  159. # sql_power += " and C_IS_RATIONING_BY_MANUAL_CONTROL=0 and C_IS_RATIONING_BY_AUTO_CONTROL=0"
  160. powers = self.exec_sql(sql_power, engine)
  161. powers['C_TIME'] = pd.to_datetime(powers['C_TIME'])
  162. mask1 = powers['C_REAL_VALUE'].astype(float) > float(cap)
  163. mask = powers['C_REAL_VALUE'] == -99
  164. mask = mask | mask1
  165. print("实际功率共{}条,要剔除功率有{}条".format(len(powers), mask.sum()))
  166. powers = powers[~mask]
  167. print("剔除完后还剩{}条".format(len(powers)))
  168. binary_map = {b'\x00': 0, b'\x01': 1}
  169. powers['C_IS_RATIONING_BY_AUTO_CONTROL'] = powers['C_IS_RATIONING_BY_AUTO_CONTROL'].map(binary_map)
  170. powers = rm_duplicated(powers)
  171. saveData("power.csv", powers)
  172. def get_process_dq(self):
  173. """
  174. 获取短期预测结果
  175. :param database:
  176. :return:
  177. """
  178. engine = self.create_database()
  179. sql_dq = "select C_FORECAST_TIME AS C_TIME, C_FP_VALUE from t_forecast_power_short_term " \
  180. "where C_FORECAST_TIME between {} and {}".format(self.begin_stamp, self.end_stamp)
  181. dq = self.exec_sql(sql_dq, engine)
  182. # dq['C_TIME'] = pd.to_datetime(dq['C_TIME'], unit='ms')
  183. dq['C_TIME'] = dq['C_TIME'].apply(timestamp_to_datetime)
  184. # dq = dq[dq['C_FORECAST_HOW_LONG_AGO'] == 1]
  185. # dq.drop('C_FORECAST_HOW_LONG_AGO', axis=1, inplace=True)
  186. dq = cleaning(dq, 'dq', cols=['C_FP_VALUE'])
  187. dq['C_TIME'] = dq['C_TIME'].dt.strftime('%Y-%m-%d %H:%M:%S')
  188. saveData("dq.csv", dq)
  189. def indep_process(self):
  190. """
  191. 进一步数据处理:时间统一处理等
  192. :return:
  193. """
  194. # 测风塔数据处理
  195. for i in self.towerloc:
  196. tower = readData("/tower-{}.csv".format(i))
  197. tower['C_TIME'] = pd.to_datetime(tower['C_TIME'])
  198. # 判断每一列是否全是 -99
  199. all_minus_99 = (tower == -99).all()
  200. # 获取全是 -99 的列的列名
  201. cols_to_drop = all_minus_99[all_minus_99 == True].index.tolist()
  202. # 使用 drop() 方法删除列
  203. tower = tower.drop(cols_to_drop, axis=1)
  204. tower = cleaning(tower, 'tower', ['C_WS_INST_HUB_HEIGHT'])
  205. saveData("/tower-{}-process.csv".format(i), tower)
  206. def get_process_cdq(self):
  207. """
  208. 获取超短期预测结果
  209. :param database:
  210. :return:
  211. """
  212. engine = self.create_database()
  213. sql_cdq = "select C_FORECAST_TIME AS C_TIME, C_ABLE_VALUE, C_FORECAST_HOW_LONG_AGO from t_forecast_power_ultra_short_term_his" \
  214. " where C_FORECAST_TIME between {} and {}".format(self.begin_stamp, self.end_stamp)
  215. cdq = self.exec_sql(sql_cdq, engine)
  216. cdq['C_TIME'] = cdq['C_TIME'].apply(timestamp_to_datetime)
  217. cdq = cleaning(cdq, 'cdq', cols=['C_ABLE_VALUE'], dup=False)
  218. # cdq = cdq[cdq['C_FORECAST_HOW_LONG_AGO'] == int(str(self.opt.predict_point)[1:])]
  219. cdq['C_TIME'] = cdq['C_TIME'].dt.strftime('%Y-%m-%d %H:%M:%S')
  220. saveData("cdq.csv", cdq)
  221. def get_process_turbine(self):
  222. """
  223. 从数据库中获取风头数据,并进行简单处理
  224. :param database:
  225. :return:
  226. """
  227. number = self.opt.usable_power['turbine_id']
  228. # 机头数据
  229. engine = self.create_database()
  230. self.logger.info("导出风机{}的数据".format(number))
  231. sql_turbine = "select C_TIME, C_WS, C_WD, C_ACTIVE_POWER from t_wind_turbine_status_data " \
  232. "WHERE C_EQUIPMENT_NO=" + str(number) + " and C_TIME between '{}' and '{}'".format(self.begin, self.end) # + " and C_WS>0 and C_ACTIVE_POWER>0"
  233. turbine = self.exec_sql(sql_turbine, engine)
  234. turbine = cleaning(turbine, 'cdq', cols=['C_WS', 'C_ACTIVE_POWER'], dup=False)
  235. turbine = turbine[turbine['C_TIME'].dt.strftime('%M').isin(['00', '15', '30', '45'])]
  236. # 直接导出所有数据
  237. saveData("turbine-{}.csv".format(number), turbine)
  238. def data_process(self):
  239. """
  240. 数据导出+初步处理的总操控代码
  241. :param database:
  242. :return:
  243. """
  244. self.clear_data()
  245. try:
  246. self.get_process_power()
  247. self.get_process_dq()
  248. # self.get_process_cdq()
  249. self.get_process_NWP()
  250. self.get_process_tower()
  251. # self.get_process_turbine()
  252. self.indep_process()
  253. except Exception as e:
  254. print("导出数据出错:{}".format(e.args))