nn_cnn_ts.py 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # time: 2024/5/6 13:25
  4. # file: time_series.py
  5. # author: David
  6. # company: shenyang JY
  7. import os.path
  8. from keras.layers import Input, Dense, LSTM, concatenate, Conv1D, Conv2D, MaxPooling1D, BatchNormalization, Flatten, Dropout
  9. from keras.models import Model, load_model
  10. from keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard
  11. from keras import optimizers, regularizers
  12. import keras.backend as K
  13. import numpy as np
  14. from sqlalchemy.ext.instrumentation import find_native_user_instrumentation_hook
  15. np.random.seed(42)
  16. from cache.sloss import SouthLoss, NorthEastLoss
  17. import tensorflow as tf
  18. tf.compat.v1.set_random_seed(1234)
  19. from threading import Lock
  20. model_lock = Lock()
  21. def rmse(y_true, y_pred):
  22. return K.sqrt(K.mean(K.square(y_pred - y_true)))
  23. var_dir = os.path.dirname(os.path.dirname(__file__))
  24. class FMI(object):
  25. model = None
  26. train = False
  27. def __init__(self, log, args, graph, sess):
  28. self.logger = log
  29. self.graph = graph
  30. self.sess = sess
  31. opt = args.parse_args_and_yaml()
  32. with self.graph.as_default():
  33. tf.compat.v1.keras.backend.set_session(self.sess)
  34. FMI.get_model(opt)
  35. @staticmethod
  36. def get_model(opt):
  37. """
  38. 单例模式+线程锁,防止在异步加载时引发线程安全
  39. """
  40. try:
  41. if FMI.model is None or FMI.train is True:
  42. with model_lock:
  43. FMI.model = FMI.get_keras_model(opt)
  44. FMI.model.load_weights(os.path.join(var_dir, 'var', 'fmi.h5'))
  45. except Exception as e:
  46. print("加载模型权重失败:{}".format(e.args))
  47. @staticmethod
  48. def get_keras_model(opt):
  49. db_loss = NorthEastLoss(opt)
  50. south_loss = SouthLoss(opt)
  51. l1_reg = regularizers.l1(opt.Model['lambda_value_1'])
  52. l2_reg = regularizers.l2(opt.Model['lambda_value_2'])
  53. nwp_input = Input(shape=(opt.Model['time_step'], opt.Model['input_size_nwp']), name='nwp')
  54. env_input = Input(shape=(opt.Model['his_points'], opt.Model['input_size_env']), name='env')
  55. con1 = Conv1D(filters=64, kernel_size=5, strides=1, padding='valid', activation='relu', kernel_regularizer=l2_reg)(nwp_input)
  56. nwp = MaxPooling1D(pool_size=5, strides=1, padding='valid', data_format='channels_last')(con1)
  57. nwp_lstm = LSTM(units=opt.Model['hidden_size'], return_sequences=False, kernel_regularizer=l2_reg)(nwp)
  58. con2 = Conv1D(filters=64, kernel_size=5, strides=1, padding='valid', activation='relu', kernel_regularizer=l2_reg)(env_input)
  59. env = MaxPooling1D(pool_size=5, strides=1, padding='valid', data_format='channels_last')(con2)
  60. env_lstm = LSTM(units=opt.Model['hidden_size'], return_sequences=False, name='env_lstm',kernel_regularizer=l2_reg)(env)
  61. tiao = Dense(4, name='d4', kernel_regularizer=l1_reg)(env_lstm)
  62. if opt.Model['fusion']:
  63. fusion = concatenate([nwp_lstm, tiao])
  64. else:
  65. fusion = nwp_lstm
  66. output = Dense(opt.Model['output_size'], name='cdq_output')(fusion)
  67. model = Model([env_input, nwp_input], output)
  68. adam = optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=True)
  69. model.compile(loss=south_loss, optimizer=adam)
  70. return model
  71. def train_init(self, opt):
  72. tf.compat.v1.keras.backend.set_session(self.sess)
  73. model = FMI.get_keras_model(opt)
  74. try:
  75. if opt.Model['add_train'] and opt.authentication['repair'] != "null":
  76. # 进行加强训练,支持修模
  77. model.load_weights(os.path.join(var_dir, 'var', 'fmi.h5'))
  78. self.logger.info("已加载加强训练基础模型")
  79. except Exception as e:
  80. self.logger.info("加强训练加载模型权重失败:{}".format(e.args))
  81. model.summary()
  82. return model
  83. def training(self, opt, train_and_valid_data):
  84. model = self.train_init(opt)
  85. train_X, train_Y, valid_X, valid_Y = train_and_valid_data
  86. print("----------", np.array(train_X[0]).shape)
  87. print("++++++++++", np.array(train_X[1]).shape)
  88. # weight_lstm_1, bias_lstm_1 = model.get_layer('d1').get_weights()
  89. # print("weight_lstm_1 = ", weight_lstm_1)
  90. # print("bias_lstm_1 = ", bias_lstm_1)
  91. check_point = ModelCheckpoint(filepath='./var/' + 'fmi.h5', monitor='val_loss',
  92. save_best_only=True, mode='auto')
  93. early_stop = EarlyStopping(monitor='val_loss', patience=opt.Model['patience'], mode='auto')
  94. # tbCallBack = TensorBoard(log_dir='../figure',
  95. # histogram_freq=0,
  96. # write_graph=True,
  97. # write_images=True)
  98. history = model.fit(train_X, train_Y, batch_size=opt.Model['batch_size'], epochs=opt.Model['epoch'], verbose=2,
  99. validation_data=(valid_X, valid_Y), callbacks=[check_point, early_stop])
  100. loss = np.round(history.history['loss'], decimals=5)
  101. val_loss = np.round(history.history['val_loss'], decimals=5)
  102. self.logger.info("-----模型训练经过{}轮迭代-----".format(len(loss)))
  103. self.logger.info("训练集损失函数为:{}".format(loss))
  104. self.logger.info("验证集损失函数为:{}".format(val_loss))
  105. self.logger.info("训练结束,原模型地址:{}".format(id(FMI.model)))
  106. with self.graph.as_default():
  107. tf.compat.v1.keras.backend.set_session(self.sess)
  108. FMI.train = True
  109. FMI.get_model(opt)
  110. FMI.train = False
  111. self.logger.info("保护线程,加载模型,地址:{}".format(id(FMI.model)))
  112. def predict(self, test_X, batch_size=1):
  113. with self.graph.as_default():
  114. with self.sess.as_default():
  115. result = FMI.model.predict(test_X, batch_size=batch_size)
  116. self.logger.info("执行预测方法")
  117. return result
  118. def train_custom(self, train_X, train_Y, model, opt):
  119. epochs = opt.Model['epoch']
  120. batch_size = opt.Model['batch_size']
  121. num_batches = len(train_X) // batch_size # 取整
  122. optimizer = tf.keras.optimizers.Adam(learning_rate=opt.Model[""])
  123. for epoch in range(epochs):
  124. for batch_index in range(epochs):
  125. start = batch_index * batch_size
  126. end = start + batch_size
  127. x_batch, y_batch = train_X[start: end], train_Y[start: end]
  128. with tf.GradientTape() as tape:
  129. res = model(x_batch)
  130. loss = rmse(y_batch, res)
  131. gradients = tape.gradient(loss, model.trainable_variables)