data_process.py 4.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # time: 2024/5/6 13:52
  4. # file: data_process.py
  5. # author: David
  6. # company: shenyang JY
  7. import os
  8. import numpy as np
  9. import pandas as pd
  10. from cache.data_cleaning import rm_duplicated
  11. np.random.seed(42)
  12. class DataProcess(object):
  13. def __init__(self, log, args):
  14. self.logger = log
  15. self.args = args
  16. self.opt = self.args.parse_args_and_yaml()
  17. # 主要是联立后的补值操作
  18. def get_train_data(self, unite, envir):
  19. unite['C_TIME'] = pd.to_datetime(unite['C_TIME'])
  20. unite['time_diff'] = unite['C_TIME'].diff()
  21. dt_short = pd.Timedelta(minutes=15)
  22. dt_long = pd.Timedelta(minutes=15 * self.opt.Model['how_long_fill'])
  23. data_train = self.missing_time_splite(unite, dt_short, dt_long)
  24. miss_points = unite[(unite['time_diff'] > dt_short) & (unite['time_diff'] < dt_long)]
  25. miss_number = miss_points['time_diff'].dt.total_seconds().sum(axis=0)/(15*60) - len(miss_points)
  26. self.logger.info("再次测算,需要插值的总点数为:{}".format(miss_number))
  27. if miss_number > 0 and self.opt.Model["train_data_fill"]:
  28. data_train = self.data_fill(data_train)
  29. return data_train, envir
  30. def get_test_data(self, unite, envir):
  31. unite['C_TIME'] = pd.to_datetime(unite['C_TIME'])
  32. unite['time_diff'] = unite['C_TIME'].diff()
  33. dt_short = pd.Timedelta(minutes=15)
  34. dt_long = pd.Timedelta(minutes=15 * self.opt.Model['how_long_fill'])
  35. data_test = self.missing_time_splite(unite, dt_short, dt_long)
  36. miss_points = unite[(unite['time_diff'] > dt_short) & (unite['time_diff'] < dt_long)]
  37. miss_number = miss_points['time_diff'].dt.total_seconds().sum(axis=0) / (15 * 60) - len(miss_points)
  38. self.logger.info("再次测算,需要插值的总点数为:{}".format(miss_number))
  39. if self.opt.Model["test_data_fill"] and miss_number > 0:
  40. data_test = self.data_fill(data_test, test=True)
  41. return data_test, envir
  42. def get_predict_data(self, nwp, dq):
  43. if self.opt.Model["predict_data_fill"] and len(dq) > len(nwp):
  44. self.logger.info("接口nwp和dq合并清洗后,需要插值的总点数为:{}".format(len(dq)-len(nwp)))
  45. nwp.set_index('C_TIME', inplace=True)
  46. dq.set_index('C_TIME', inplace=True)
  47. nwp = nwp.resample('15T').interpolate(method='linear') # nwp先进行线性填充
  48. nwp = nwp.reindex(dq.index, method='bfill') # 再对超过采样边缘无法填充的点进行二次填充
  49. nwp = nwp.reindex(dq.index, method='ffill')
  50. nwp.reset_index(drop=False, inplace=True)
  51. dq.reset_index(drop=False, inplace=True)
  52. return nwp
  53. def missing_time_splite(self, df, dt_short, dt_long):
  54. n_long, n_short, n_points = 0, 0, 0
  55. start_index = 0
  56. dfs = []
  57. for i in range(1, len(df)):
  58. if df['time_diff'][i] >= dt_long:
  59. df_long = df.iloc[start_index:i, :-1]
  60. dfs.append(df_long)
  61. start_index = i
  62. n_long += 1
  63. if df['time_diff'][i] > dt_short:
  64. self.logger.info(f"{df['C_TIME'][i-1]} ~ {df['C_TIME'][i]}")
  65. points = df['time_diff'].dt.total_seconds()[i]/(60*15)-1
  66. self.logger.info("缺失点数:{}".format(points))
  67. if df['time_diff'][i] < dt_long:
  68. n_short += 1
  69. n_points += points
  70. self.logger.info("需要补值的点数:{}".format(points))
  71. dfs.append(df.iloc[start_index:, :-1])
  72. self.logger.info(f"数据总数:{len(df)}, 时序缺失的间隔:{n_short}, 其中,较长的时间间隔:{n_long}")
  73. self.logger.info("需要补值的总点数:{}".format(n_points))
  74. return dfs
  75. def data_fill(self, dfs, test=False):
  76. dfs_fill, inserts = [], 0
  77. for i, df in enumerate(dfs):
  78. df = rm_duplicated(df, self.logger)
  79. df1 = df.set_index('C_TIME', inplace=False)
  80. dff = df1.resample('15T').interpolate(method='linear') # 采用线性补值,其他补值方法需要进一步对比
  81. dff.reset_index(inplace=True)
  82. points = len(dff) - len(df1)
  83. dfs_fill.append(dff)
  84. self.logger.info("{} ~ {} 有 {} 个点, 填补 {} 个点.".format(dff.iloc[0, 0], dff.iloc[-1, 0], len(dff), points))
  85. inserts += points
  86. name = "预测数据" if test is True else "训练集"
  87. self.logger.info("{}分成了{}段,实际一共补值{}点".format(name, len(dfs_fill), inserts))
  88. return dfs_fill