123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # time: 2023/4/12 17:42
- # file: data_features.py
- # author: David
- # company: shenyang JY
- import pandas as pd
- from sklearn.model_selection import train_test_split
- import numpy as np
- class data_features(object):
- def __init__(self, opt):
- self.opt = opt
- self.time_step = self.opt.Model["time_step"]
- self.columns = list()
- def get_train_data(self, dfs):
- train_x, valid_x, train_y, valid_y = [], [], [], []
- for i, df in enumerate(dfs, start=1):
- datax, datay = self.get_data_features(df, is_train=True)
- tx, vx, ty, vy = train_test_split(datax, datay, test_size=self.opt.valid_data_rate, random_state=self.opt.Model["random_seed"], shuffle=self.opt.shuffle_train_data) # 划分训练和验证集
- train_x.extend(tx)
- valid_x.extend(vx)
- train_y.extend(ty)
- valid_y.extend(vy)
- train_y = np.concatenate([[y.iloc[:, 1:].values for y in train_y]], axis=0)
- valid_y = np.concatenate([[y.iloc[:, 1:].values for y in valid_y]], axis=0)
- train_x = np.array([x[0].values for x in train_x])
- valid_x = np.array([x[0].values for x in valid_x])
- return train_x, valid_x, train_y, valid_y
- def get_test_data(self, dfs):
- test_x, test_y, data_y = [], [], []
- for i, df in enumerate(dfs, start=1):
- datax, datay = self.get_data_features(df, is_train=False)
- test_x.extend(datax)
- test_y.extend(datay)
- data_y.extend(datay)
- test_x = np.array([x[0].values for x in test_x])
- test_y = np.concatenate([[y.iloc[:, 1:].values for y in test_y]], axis=0)
- return test_x, test_y, data_y
- def get_data_features(self, norm_data, is_train): # 这段代码基于pandas方法的优化
- time_step = self.opt.Model["time_step"]
- feature_data = norm_data.reset_index(drop=True)
- time_step_loc = time_step - 1
- train_num = int(len(feature_data))
- label_features = ['C_TIME', 'col1_power', 'col2_power', 'sum_power', 'C_VALUE'] if is_train is True else ['C_TIME', 'col1_power', 'col2_power', 'sum_power', 'C_VALUE']
- nwp = [feature_data.loc[i:i + time_step_loc, 'C_RADIATION':'C_TPR'].reset_index(drop=True) for i in range(train_num - time_step)] # 数据库字段 'C_T': 'C_WS170'
- labels = [feature_data.loc[i:i + time_step_loc, label_features].reset_index(drop=True) for i in range(train_num - time_step)]
- features_x, features_y = [], []
- print("匹配环境前,{}组".format(len(nwp)), end=" -> ")
- for i, row in enumerate(zip(nwp, labels)):
- time_end = row[1]['C_TIME'][0]
- time_start = time_end - pd.DateOffset(1)
- # row1 = envir[(envir.C_TIME < time_end) & (envir.C_TIME > time_start)][-16:]
- # if len(row1) < 16:
- # print("环境数据不足16个点:", len(row1))
- # continue
- # row1 = row1.reset_index(drop=True).drop(['C_TIME'], axis=1)
- # features_x.append([row1.iloc[:,:-4], row1.iloc[:,-4:]])
- features_x.append([row[0]])
- features_y.append(row[1])
- print("匹配环境后,{}组".format(len(features_x)))
- return features_x, features_y
|