run_case_直接.py 2.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. # -*- coding: UTF-8 -*-
  2. import numpy as np
  3. import os
  4. import sys
  5. import time
  6. from figure import Figure
  7. from data_process import data_process
  8. from data_features import data_features
  9. from logger import load_logger
  10. from config import myargparse
  11. from data_analyse import data_analyse
  12. frame = "keras"
  13. if frame == "keras":
  14. from model.model_keras_1 import train, predict
  15. os.environ["TF_CPP_MIN_LOG_LEVEL"] = '3'
  16. else:
  17. raise Exception("Wrong frame seletion")
  18. def main():
  19. parse = myargparse(discription="training config", add_help=False)
  20. opt = parse.parse_args_and_yaml()
  21. logger = load_logger(opt)
  22. try:
  23. np.random.seed(opt.Model["random_seed"])
  24. process = data_process(opt=opt)
  25. dfs_train, dfs_test = process.get_processed_data([9, 10])
  26. features = data_features(opt=opt, mean=process.mean, std=process.std)
  27. if opt.do_train:
  28. train_X, valid_X, train_Y, valid_Y = features.get_train_data(dfs_train)
  29. # train_Y = [np.array([y[:, 0] for y in train_Y]), np.array([y[:, 1] for y in train_Y])]
  30. # valid_Y = [np.array([y[:, 0] for y in valid_Y]), np.array([y[:, 1] for y in valid_Y])]
  31. train_Y = [np.array([y[:, 3] for y in train_Y])]
  32. valid_Y = [np.array([y[:, 3] for y in valid_Y])]
  33. train(opt, [train_X, train_Y, valid_X, valid_Y])
  34. if opt.do_predict:
  35. test_X, test_Y, df_Y = features.get_test_data(dfs_test)
  36. result = predict(opt, test_X) # 这里输出的是未还原的归一化预测数据
  37. analyse = data_analyse(opt, logger, process)
  38. analyse.predict_acc(result, df_Y, predict_all=True)
  39. except Exception:
  40. logger.error("Run Error", exc_info=True)
  41. if __name__ == "__main__":
  42. import argparse
  43. # argparse方便于命令行下输入参数,可以根据需要增加更多
  44. # parser = argparse.ArgumentParser()
  45. # parser.add_argument("-t", "--do_train", default=False, type=bool, help="whether to train")
  46. # parser.add_argument("-p", "--do_predict", default=True, type=bool, help="whether to train")
  47. # parser.add_argument("-b", "--batch_size", default=64, type=int, help="batch size")
  48. # parser.add_argument("-e", "--epoch", default=20, type=int, help="epochs num")
  49. # args = parser.parse_args()
  50. # con = Config()
  51. # for key in dir(args): # dir(args) 函数获得args所有的属性
  52. # if not key.startswith("_"): # 去掉 args 自带属性,比如__name__等
  53. # setattr(con, key, getattr(args, key)) # 将属性值赋给Config
  54. main()