1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # time: 2023/3/20 15:19
- # file: figure.py
- # author: David
- # company: shenyang JY
- import sys
- import numpy as np
- import matplotlib.pyplot as plt
- class Figure(object):
- def __init__(self, opt, logger, process):
- self.opt = opt
- self.ds = process
- self.logger = logger
- def get_16_points(self, results):
- # results为模型预测的一维数组,遍历,取每16个点的最后一个点
- preds = []
- for res in results:
- preds.append(res[-1])
- return np.array(preds)
- def draw(self, label_data, predict_norm_data, numbers):
- # label_data = origin_data.data[origin_data.train_num + origin_data.start_num_in_test : ,
- # config.label_in_feature_index]
- # dq_data = dq_data.reshape((-1, self.opt.output_size))
- predict_norm_data = self.get_16_points(predict_norm_data)
- label_data = self.get_16_points(label_data)
- label_data = label_data.reshape((-1, self.opt.output_size))
- # label_data 要进行反归一化
- label_data = label_data * self.ds.std[self.opt.label_in_feature_index] + \
- self.ds.mean[self.opt.label_in_feature_index]
- predict_data = predict_norm_data * self.ds.std[self.opt.label_in_feature_index] + \
- self.ds.mean[self.opt.label_in_feature_index] # 通过保存的均值和方差还原数据
- # dq_data = dq_data * self.ds.std[0] + self.ds.mean[0]
- # predict_data = predict_norm_data
- assert label_data.shape[0] == predict_data.shape[0], "The element number in origin and predicted data is different"
- label_name = [self.ds.tables_column_name[i] for i in self.opt.label_in_feature_index]
- label_column_num = len(self.opt.label_columns)
- # label 和 predict 是错开config.predict_day天的数据的
- # 下面是两种norm后的loss的计算方式,结果是一样的,可以简单手推一下
- # label_norm_data = origin_data.norm_data[origin_data.train_num + origin_data.start_num_in_test:,
- # config.label_in_feature_index]
- # loss_norm = np.mean((label_norm_data[config.predict_day:] - predict_norm_data[:-config.predict_day]) ** 2, axis=0)
- # logger.info("The mean squared error of stock {} is ".format(label_name) + str(loss_norm))
- loss = np.sum((label_data - predict_data) ** 2)/len(label_data) # mse
- # loss = np.mean((label_data - predict_data) ** 2, axis=0)
- loss_sqrt = np.sqrt(loss) # rmse
- loss_norm = 1 - loss_sqrt / self.opt.cap
- # loss_norm = loss/(ds.std[opt.label_in_feature_index] ** 2)
- self.logger.info("The mean squared error of power {} is ".format(label_name) + str(loss_norm))
- # loss1 = np.sum((label_data - dq_data) ** 2) / len(label_data) # mse
- # loss_sqrt1 = np.sqrt(loss1) # rmse
- # loss_norm1 = 1 - loss_sqrt1 / self.opt.cap
- # self.logger.info("The mean squared error1 of power {} is ".format(label_name) + str(loss_norm1))
- if self.opt.is_continuous_predict:
- # label_X = range(int((self.ds.data_num - self.ds.train_num - 32)))
- label_X = list(range(numbers))
- else:
- label_X = range(int((self.ds.data_num - self.ds.train_num - self.ds.start_num_in_test)/2))
- print("label_x = ", label_X)
- predict_X = [x for x in label_X]
- if not sys.platform.startswith('linux'): # 无桌面的Linux下无法输出,如果是有桌面的Linux,如Ubuntu,可去掉这一行
- for i in range(label_column_num):
- plt.figure(i+1) # 预测数据绘制
- plt.plot(label_X, label_data[:, i], label='label', color='b')
- plt.plot(predict_X, predict_data[:, i], label='predict', color='g')
- # plt.plot(predict_X, dq_data[:, i], label='dq', color='y')
- # plt.title("Predict actual {} power with {}".format(label_name[i], self.opt.used_frame))
- self.logger.info("The predicted power {} for the last {} point(s) is: ".format(label_name[i], self.opt.predict_points) +
- str(np.squeeze(predict_data[-self.opt.predict_points:, i])))
- if self.opt.do_figure_save:
- plt.savefig(self.opt.figure_save_path+"{}predict_{}_with_{}.png".format(self.opt.continue_flag, label_name[i], opt.used_frame))
- plt.show()
|