back.py 3.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # time: 2023/4/14 15:32
  4. # file: back.py
  5. # author: David
  6. # company: shenyang JY
  7. import sys
  8. import numpy as np
  9. import matplotlib.pyplot as plt
  10. import pandas as pd
  11. class data_analyse(object):
  12. def __init__(self, opt, logger, process):
  13. self.opt = opt
  14. self.logger = logger
  15. self.ds = process
  16. def calculate_acc(self, label_data, predict_data):
  17. loss = np.sum((label_data - predict_data) ** 2) / len(label_data) # mse
  18. loss_sqrt = np.sqrt(loss) # rmse
  19. loss_acc = 1 - loss_sqrt / self.opt.cap
  20. return loss_acc
  21. def get_16_points(self, results):
  22. # results为模型预测的一维数组,遍历,取每16个点的最后一个点
  23. preds = []
  24. for res in results:
  25. preds.append(res.iloc[-1].values)
  26. return np.array(preds)
  27. def predict_acc(self, predict_data, dfy):
  28. predict_data = predict_data * self.ds.std['C_REAL_VALUE'] + self.ds.mean['C_REAL_VALUE']
  29. dfs = dfy[0]
  30. for i in range(1, len(dfy)):
  31. dfs.extend(dfy[i])
  32. for i, df in enumerate(dfs):
  33. df["PREDICT"] = predict_data[i]
  34. dfs[i] = df
  35. data = self.get_16_points(dfs)
  36. df = pd.DataFrame(data, columns=['C_TIME', 'C_REAL_VALUE', 'C_FP_VALUE', 'PREDICT'])
  37. # label_data = label_data.reshape((-1, self.opt.output_size))
  38. # label_data 要进行反归一化
  39. label_name = [self.opt.feature_columns[i] for i in self.opt.label_in_feature_index]
  40. loss_norm = self.calculate_acc(df['C_REAL_VALUE'], df['PREDICT'])
  41. self.logger.info("The mean squared error of power {} is ".format(label_name) + str(loss_norm))
  42. loss_norm = self.calculate_acc(df['C_REAL_VALUE'], df['C_FP_VALUE'])
  43. self.logger.info("The mean squared error of power {} is ".format(label_name) + str(loss_norm))
  44. self.preidct_draw(df['C_REAL_VALUE'].values, df['PREDICT'].values)
  45. def preidct_draw(self, label_data, predict_data):
  46. X = list(range(label_data.shape[0]))
  47. print("label_x = ", X)
  48. label_column_num = len(self.opt.label_columns)
  49. label_name = [self.opt.feature_columns[i] for i in self.opt.label_in_feature_index]
  50. if not sys.platform.startswith('linux'): # 无桌面的Linux下无法输出,如果是有桌面的Linux,如Ubuntu,可去掉这一行
  51. for i in range(label_column_num):
  52. plt.figure(i+1) # 预测数据绘制
  53. plt.plot(X, label_data[:, i], label='label', color='b')
  54. plt.plot(X, predict_data[:, i], label='predict', color='g')
  55. # plt.plot(predict_X, dq_data[:, i], label='dq', color='y')
  56. # plt.title("Predict actual {} power with {}".format(label_name[i], self.opt.used_frame))
  57. self.logger.info("The predicted power {} for the last {} point(s) is: ".format(label_name[i], self.opt.predict_points) +
  58. str(np.squeeze(predict_data[-self.opt.predict_points:, i])))
  59. if self.opt.do_figure_save:
  60. plt.savefig(self.opt.figure_save_path+"{}predict_{}_with_{}.png".format(self.opt.continue_flag, label_name[i], self.opt.used_frame))
  61. plt.show()
  62. def tangle_results(self):
  63. pass