12345678910111213141516171819202122232425262728293031323334353637383940 |
- import pandas as pd
- import matplotlib.pyplot as plt
- def split_test():
- # 读取大型数据集
- large_dataset = pd.read_csv("../data/Dataset_test/power/power_test.csv")
- # 将数据集等分为5个较小的数据集
- num_splits = 5
- split_size = len(large_dataset) // num_splits
- small_datasets = []
- for i in range(num_splits):
- start = i * split_size
- end = (i + 1) * split_size if i < num_splits - 1 else len(large_dataset)
- small_datasets.append(large_dataset[start:end])
- # 保存5个较小的数据集为.csv文件
- for i, small_dataset in enumerate(small_datasets):
- small_dataset.to_csv(f"../data/Dataset_test/power/power_dataset_{i + 1}.csv", index=False)
- if __name__ == '__main__':
- # 读取Excel文件
- # df = pd.read_excel("./data/nwp1.xlsx")
- #
- # # 计算分段数量
- # num_windows = df.shape[0] // 16
- #
- # # 循环每一个分段
- # for i in range(num_windows):
- # window = df.iloc[i * 16:(i + 1) * 16,2:-2]
- # data = window.astype(float)
- #
- # # 将数据绘制为图像
- # plt.imshow(data, cmap="gray")
- #
- # # 保存图像
- # plt.savefig("./wind/window_{}.png".format(i))
- split_test()
|