12345678910111213141516171819202122232425262728293031323334353637383940414243 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # time: 2023/4/11 15:58
- # file: test.py
- # author: David
- # company: shenyang JY
- import pandas as pd
- import numpy as np
- # index = pd.date_range('1/1/2000', periods=9, freq='T')
- # series = pd.Series(range(9), index=index)
- # df = pd.DataFrame({'value': series})
- # series1 = series.resample('3T').sum()
- # series2 = series.resample('3T', label='right').sum()
- # series3 = series.resample('3T', label='right', closed='right').sum()
- # series4 = series.resample('30S').asfreq()
- # series5 = series.resample('30S').bfill()
- # print(series)
- # print(series1)
- # print(series2)
- # print(series3)
- # print(series4)
- # print("---", series5)
- # x = np.random.randint(1,100,20).reshape((10,2))
- # print(x)
- # from sklearn.model_selection import train_test_split
- #
- # x_train, x_test = train_test_split(x, test_size=0.2, random_state=1, shuffle=False)
- # print("x_train", x_train)
- # print("x_test", x_test)
- import numpy as np
- import pandas as pd
- #创建一组数据
- data = {'name': ['John', 'Mike', 'Mozla', 'Rose', 'David', 'Marry', 'Wansi', 'Sidy', 'Jack', 'Alic'],
- 'age': [20, 32, 29, np.nan, 15, 28, 21, 30, 37, 25],
- 'gender': [0, 0, 1, 1, 0, 1, 0, 0, 1, 1],
- 'isMarried': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']}
- label = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
- df = pd.DataFrame(data, index=label)
- print(df.loc[:,'name'])
- pass
|