model_keras.py 2.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657
  1. # -*- coding: UTF-8 -*-
  2. from keras.layers import Input, Dense, LSTM, concatenate, Conv1D, Conv2D, MaxPooling1D
  3. from keras.models import Model
  4. from keras.callbacks import ModelCheckpoint, EarlyStopping
  5. def get_keras_model(opt):
  6. lstm_input = Input(shape=(opt.Model['time_step'], opt.input_size_lstm))
  7. cnn_input = Input(shape=(opt.Model['time_step'], opt.input_size_cnn))
  8. cnn = cnn_input
  9. cnn = Conv1D(filters=64, kernel_size=1, strides=1, padding='valid', activation='relu')(cnn)
  10. cnn = MaxPooling1D(pool_size=64, strides=1, padding='valid', data_format='channels_first')(cnn) # trides = None,那么默认值是pool_size
  11. lstm = lstm_input
  12. for i in range(opt.Model['lstm_layers']):
  13. lstm = LSTM(units=opt.Model['hidden_size'], dropout=opt.Model['dropout_rate'], return_sequences=True)(lstm)
  14. lstm = concatenate([lstm, cnn])
  15. output = Dense(opt.output_size)(lstm)
  16. model = Model([cnn_input, lstm_input], output)
  17. model.compile(loss='mse', optimizer='adam') # metrics=["mae"]
  18. return model
  19. def gpu_train_init():
  20. import tensorflow as tf
  21. from keras.backend.tensorflow_backend import set_session
  22. sess_config = tf.ConfigProto(log_device_placement=True, allow_soft_placement=True)
  23. sess_config.gpu_options.per_process_gpu_memory_fraction = 0.7 # 最多使用70%GPU内存
  24. sess_config.gpu_options.allow_growth=True # 初始化时不全部占满GPU显存, 按需分配
  25. sess = tf.Session(config=sess_config)
  26. set_session(sess)
  27. def train(opt, train_and_valid_data):
  28. if opt.use_cuda: gpu_train_init()
  29. train_X, train_Y, valid_X, valid_Y = train_and_valid_data
  30. import numpy as np
  31. print("----------", np.array(train_X[0]).shape)
  32. print("++++++++++", np.array(train_X[1]).shape)
  33. model = get_keras_model(opt)
  34. model.summary()
  35. if opt.add_train:
  36. model.load_weights(opt.model_save_path + opt.model_name)
  37. check_point = ModelCheckpoint(filepath=opt.model_save_path + opt.model_name, monitor='val_loss',
  38. save_best_only=True, mode='auto')
  39. early_stop = EarlyStopping(monitor='val_loss', patience=opt.Model['patience'], mode='auto')
  40. model.fit(train_X, train_Y, batch_size=opt.Model['batch_size'], epochs=opt.Model['epoch'], verbose=2,
  41. validation_data=(valid_X, valid_Y), callbacks=[check_point, early_stop])
  42. def predict(config, test_X):
  43. model = get_keras_model(config)
  44. model.load_weights(config.model_save_path + config.model_name)
  45. result = model.predict(test_X, batch_size=1)
  46. # result = result.reshape((-1, config.output_size))
  47. return result