run_case_history.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # time: 2023/3/20 9:23
  4. # file: run_case_history.py
  5. # author: David
  6. # company: shenyang JY
  7. class Data:
  8. def __init__(self, config):
  9. self.config = config
  10. self.data, self.data_column_name = self.read_data()
  11. self.data_num = self.data.shape[0]
  12. self.train_num = int(self.data_num * self.config.train_data_rate)
  13. self.mean = np.mean(self.data, axis=0) # 数据的均值和方差
  14. self.std = np.std(self.data, axis=0)
  15. self.norm_data = (self.data - self.mean)/self.std # 归一化,去量纲
  16. self.start_num_in_test = 0 # 测试集中前几天的数据会被删掉,因为它不够一个time_step
  17. def read_data(self): # 读取初始数据
  18. if self.config.debug_mode:
  19. init_data = pd.read_csv(self.config.train_data_path, nrows=self.config.debug_num,
  20. usecols=self.config.feature_columns)
  21. else:
  22. init_data = pd.read_csv(self.config.train_data_path, usecols=self.config.feature_columns)
  23. init_data = self.filter_data(init_data)
  24. return init_data.values, init_data.columns.tolist() # .columns.tolist() 是获取列名
  25. def filter_data(self, init_data):
  26. return init_data[init_data.apply(np.sum, axis=1)!=0]
  27. def get_train_and_valid_data(self):
  28. feature_data = self.norm_data[:self.train_num]
  29. label_data = self.norm_data[: self.train_num,
  30. self.config.label_in_feature_index] # 将延后几天的数据作为label
  31. if not self.config.do_continue_train:
  32. # 在非连续训练模式下,每time_step行数据会作为一个样本,两个样本错开一行,比如:1-20行,2-21行。。。。
  33. train_x, train_y = [], []
  34. for i in range(self.train_num-self.config.time_step*2):
  35. p1 = feature_data[:, 0][i:i+self.config.start_predict_point]
  36. p2 = feature_data[:, 1][i+self.config.start_predict_point:i+self.config.start_predict_point*2]
  37. p = [list(t) for t in zip(p1, p2)] # 实际功率, 预测功率 是一组特征值
  38. l = label_data[i+self.config.start_predict_point:i+self.config.start_predict_point*2]
  39. train_x.append(p)
  40. train_y.append(l)
  41. # train_x = [feature_data[i:i+self.config.time_step] for i in range(self.train_num-self.config.time_step)]
  42. # train_y = [label_data[i+self.config.start_predict_point:i+self.config.time_step] for i in range(self.train_num-self.config.time_step)]
  43. # 这里选取后16个点 作为 预测及
  44. else:
  45. # 在连续训练模式下,每time_step行数据会作为一个样本,两个样本错开time_step行,
  46. # 比如:1-20行,21-40行。。。到数据末尾,然后又是 2-21行,22-41行。。。到数据末尾,……
  47. # 这样才可以把上一个样本的final_state作为下一个样本的init_state,而且不能shuffle
  48. # 目前本项目中仅能在pytorch的RNN系列模型中用
  49. train_x = [feature_data[start_index + i*self.config.time_step : start_index + (i+1)*self.config.time_step]
  50. for start_index in range(self.config.time_step)
  51. for i in range((self.train_num - start_index) // self.config.time_step)]
  52. train_y = [label_data[start_index + i*self.config.time_step : start_index + (i+1)*self.config.time_step]
  53. for start_index in range(self.config.time_step)
  54. for i in range((self.train_num - start_index) // self.config.time_step)]
  55. train_x, train_y = np.array(train_x), np.array(train_y)
  56. train_x, valid_x, train_y, valid_y = train_test_split(train_x, train_y, test_size=self.config.valid_data_rate,
  57. random_state=self.config.random_seed,
  58. shuffle=self.config.shuffle_train_data) # 划分训练和验证集,并打乱
  59. return train_x, valid_x, train_y, valid_y
  60. class Config:
  61. # 数据参数
  62. # feature_columns = list(range(2, 9)) # 要作为feature的列,按原数据从0开始计算,也可以用list 如 [2,4,6,8] 设置
  63. feature_columns = list(range(1, 3))
  64. # label_columns = [4, 5] # 要预测的列,按原数据从0开始计算, 如同时预测第四,五列 最低价和最高价
  65. label_columns = [1]
  66. # label_in_feature_index = [feature_columns.index(i) for i in label_columns] # 这样写不行
  67. label_in_feature_index = (lambda x,y: [x.index(i) for i in y])(feature_columns, label_columns) # 因为feature不一定从0开始
  68. predict_day = 1 # 预测未来几天
  69. predict_points = 16
  70. # 网络参数
  71. input_size = len(feature_columns)
  72. output_size = len(label_columns)
  73. hidden_size = 128 # LSTM的隐藏层大小,也是输出大小
  74. lstm_layers = 2 # LSTM的堆叠层数
  75. dropout_rate = 0.2 # dropout概率
  76. time_step = 16 # 这个参数很重要,是设置用前多少个点的数据来预测,也是LSTM的time step数,请保证训练数据量大于它
  77. start_predict_point = 16
  78. # 训练参数
  79. do_train = True
  80. do_predict = True
  81. add_train = False # 是否载入已有模型参数进行增量训练
  82. shuffle_train_data = False # 是否对训练数据做shuffle
  83. use_cuda = False # 是否使用GPU训练
  84. train_data_rate = 0.95 # 训练数据占总体数据比例,测试数据就是 1-train_data_rate
  85. valid_data_rate = 0.15 # 验证数据占训练数据比例,验证集在训练过程使用,为了做模型和参数选择
  86. batch_size = 64
  87. learning_rate = 0.001
  88. epoch = 20 # 整个训练集被训练多少遍,不考虑早停的前提下
  89. patience = 5 # 训练多少epoch,验证集没提升就停掉
  90. random_seed = 42 # 随机种子,保证可复现
  91. do_continue_train = False # 每次训练把上一次的final_state作为下一次的init_state,仅用于RNN类型模型,目前仅支持pytorch
  92. continue_flag = "" # 但实际效果不佳,可能原因:仅能以 batch_size = 1 训练
  93. if do_continue_train:
  94. shuffle_train_data = False
  95. batch_size = 1
  96. continue_flag = "continue_"
  97. # 训练模式
  98. debug_mode = False # 调试模式下,是为了跑通代码,追求快
  99. debug_num = 500 # 仅用debug_num条数据来调试
  100. # 框架参数
  101. used_frame = frame # 选择的深度学习框架,不同的框架模型保存后缀不一样
  102. model_postfix = {"pytorch": ".pth", "keras": ".h5", "tensorflow": ".ckpt"}
  103. model_name = "model_" + continue_flag + used_frame + model_postfix[used_frame]
  104. # 路径参数
  105. train_data_path = "./data/J00285.csv"
  106. model_save_path = "./checkpoint/" + used_frame + "/"
  107. figure_save_path = "./figure/"
  108. log_save_path = "./log/"
  109. do_log_print_to_screen = True
  110. do_log_save_to_file = True # 是否将config和训练过程记录到log
  111. do_figure_save = False
  112. do_train_visualized = False # 训练loss可视化,pytorch用visdom,tf用tensorboardX,实际上可以通用, keras没有
  113. if not os.path.exists(model_save_path):
  114. os.makedirs(model_save_path) # makedirs 递归创建目录
  115. if not os.path.exists(figure_save_path):
  116. os.mkdir(figure_save_path)
  117. if do_train and (do_log_save_to_file or do_train_visualized):
  118. cur_time = time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime())
  119. log_save_path = log_save_path + cur_time + '_' + used_frame + "/"
  120. os.makedirs(log_save_path)