data_features.py 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # time: 2023/4/12 17:42
  4. # file: data_features.py
  5. # author: David
  6. # company: shenyang JY
  7. import pandas as pd
  8. from sklearn.model_selection import train_test_split
  9. import numpy as np
  10. from data_utils import *
  11. class data_features(object):
  12. def __init__(self, opt, mean, std):
  13. self.opt = opt
  14. self.time_step = self.opt.Model["time_step"]
  15. self.mean = mean
  16. self.std = std
  17. self.columns = list()
  18. def get_train_data(self, dfs):
  19. train_x, valid_x, train_y, valid_y = [], [], [], []
  20. for df in dfs:
  21. datax, datay = self.get_data_features(df)
  22. trainx = np.array(datax)
  23. trainy = [y['C_REAL_VALUE'].values for y in datay]
  24. trainy = np.expand_dims(np.array(trainy), axis=-1) # 在最后一维加一维度
  25. tx, vx, ty, vy = train_test_split(trainx, trainy, test_size=self.opt.valid_data_rate,
  26. random_state=self.opt.Model["random_seed"],
  27. shuffle=self.opt.shuffle_train_data) # 划分训练和验证集
  28. train_x.append(tx)
  29. valid_x.append(vx)
  30. train_y.append(ty)
  31. valid_y.append(vy)
  32. train_x = np.concatenate(train_x, axis=0)
  33. valid_x = np.concatenate(valid_x, axis=0)
  34. train_y = np.concatenate(train_y, axis=0)
  35. valid_y = np.concatenate(valid_y, axis=0)
  36. train_x = self.norm_features(train_x)
  37. valid_x = self.norm_features(valid_x)
  38. train_y = self.norm_label(train_y)
  39. valid_y = self.norm_label(valid_y)
  40. return train_x, valid_x, train_y, valid_y
  41. def get_test_data(self, dfs):
  42. test_x, test_y, data_y = [], [], []
  43. for df in dfs:
  44. datax, datay = self.get_data_features(df)
  45. trainx = np.array(datax)
  46. trainy = [y['C_REAL_VALUE'].values for y in datay]
  47. trainy = np.expand_dims(np.array(trainy), axis=-1) # 在最后一维加一维度
  48. test_x.append(trainx)
  49. test_y.append(trainy)
  50. data_y.append(datay)
  51. test_x = np.concatenate(test_x, axis=0)
  52. test_y = np.concatenate(test_y, axis=0)
  53. test_x = self.norm_features(test_x)
  54. test_y = self.norm_label(test_y)
  55. return test_x, test_y, data_y
  56. def get_data_features(self, df):
  57. norm_data = df.reset_index()
  58. feature_data = norm_data[:-self.opt.predict_points]
  59. label_data = norm_data[self.opt.predict_points:].reset_index(drop=True)
  60. time_step = self.opt.Model["time_step"]
  61. time_step_loc = time_step - 1
  62. train_num = int(len(feature_data))
  63. time_rp = [feature_data.loc[i:i + time_step_loc, ['C_TIME', 'C_REAL_VALUE']] for i in range(train_num - time_step)]
  64. dq = [label_data.loc[i:i + time_step_loc, 'C_FP_VALUE'] for i in range(train_num - time_step)]
  65. features_x, features_y = [], []
  66. for row in zip(time_rp, dq):
  67. row0 = row[0]
  68. row1 = row[1]
  69. row0['C_FP_VALUE'] = row1
  70. row0.set_index('C_TIME', inplace=True, drop=False)
  71. row0["C_TIME"] = row0["C_TIME"].apply(datetime_to_timestr)
  72. features_x.append(row0)
  73. self.columns = row0.columns.tolist()
  74. features_y = [label_data.loc[i:i + time_step_loc, ['C_TIME', 'C_REAL_VALUE', 'C_FP_VALUE']] for i in range(train_num - time_step)]
  75. return features_x, features_y
  76. def norm_features(self, data: np.ndarray):
  77. mean = np.array([self.mean[col] for col in self.columns])
  78. std = np.array([self.std[col] for col in self.columns])
  79. data = (data - mean) / std # 归一化
  80. return data
  81. def norm_label(self, label_data: np.ndarray):
  82. return (label_data - self.mean['C_REAL_VALUE']) / self.std['C_REAL_VALUE']