123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # time: 2023/4/12 18:57
- # file: data_analyse.py
- # author: David
- # company: shenyang JY
- import sys
- import numpy as np
- import matplotlib.pyplot as plt
- import pandas as pd
- from data_utils import *
- class data_analyse(object):
- def __init__(self, opt, logger, process):
- self.opt = opt
- self.logger = logger
- self.ds = process
- def formula_acc(self):
- excel_data_path = self.opt.excel_data_path
- data_format = self.opt.data_format
- formula_path = excel_data_path + data_format["formula"]
- formula = pd.read_csv(formula_path, usecols=['C_ABLE_VALUE', 'C_FORECAST_HOW_LONG_AGO', 'C_FORECAST_TIME'])
- formula["C_FORECAST_TIME"] = formula["C_FORECAST_TIME"].apply(timestr_to_datetime)
- formula = formula.rename(columns={"C_FORECAST_TIME": "C_TIME"})
- formula = formula.loc[formula['C_FORECAST_HOW_LONG_AGO'] == 16]
- return formula
- def calculate_acc(self, label_data, predict_data):
- loss = np.sum((label_data - predict_data) ** 2) / len(label_data) # mse
- loss_sqrt = np.sqrt(loss) # rmse
- loss_acc = 1 - loss_sqrt / self.opt.cap
- return loss_acc
- def get_16_points(self, results):
- # results为模型预测的一维数组,遍历,取每16个点的最后一个点
- preds = []
- for res in results:
- preds.append(res.iloc[-1].values)
- return np.array(preds)
- def predict_acc(self, predict_data, dfy):
- predict_data = predict_data * self.ds.std['C_REAL_VALUE'] + self.ds.mean['C_REAL_VALUE']
- dfs = dfy[0]
- for i in range(1, len(dfy)):
- dfs.extend(dfy[i])
- for i, df in enumerate(dfs):
- df["PREDICT"] = predict_data[i]
- dfs[i] = df
- data = self.get_16_points(dfs)
- df = pd.DataFrame(data, columns=['C_TIME', 'C_REAL_VALUE', 'C_FP_VALUE', 'PREDICT'])
- # label_data = label_data.reshape((-1, self.opt.output_size))
- # label_data 要进行反归一化
- df.to_csv(self.opt.excel_data_path + "dq+rp.csv")
- formula = self.formula_acc()
- df = pd.merge(df, formula, on='C_TIME')
- label_name = [self.opt.feature_columns[i] for i in self.opt.label_in_feature_index]
- loss_norm = self.calculate_acc(df['C_REAL_VALUE'], df['PREDICT'])
- self.logger.info("The mean squared error of power {} is ".format(label_name) + str(loss_norm))
- loss_norm = self.calculate_acc(df['C_REAL_VALUE'], df['C_FP_VALUE'])
- self.logger.info("The mean squared error of power {} is ".format(label_name) + str(loss_norm))
- loss_norm = self.calculate_acc(df['C_REAL_VALUE'], df['C_ABLE_VALUE'])
- self.logger.info("The mean squared error of power {} is ".format(label_name) + str(loss_norm))
- self.preidct_draw(df['C_REAL_VALUE'].values, df['PREDICT'].values)
- def preidct_draw(self, label_data, predict_data):
- X = list(range(label_data.shape[0]))
- print("label_x = ", X)
- label_column_num = len(self.opt.label_columns)
- label_name = [self.opt.feature_columns[i] for i in self.opt.label_in_feature_index]
- if not sys.platform.startswith('linux'): # 无桌面的Linux下无法输出,如果是有桌面的Linux,如Ubuntu,可去掉这一行
- for i in range(label_column_num):
- plt.figure(i+1) # 预测数据绘制
- plt.plot(X, label_data, label='label', color='b')
- plt.plot(X, predict_data, label='predict', color='g')
- # plt.plot(predict_X, dq_data[:, i], label='dq', color='y')
- # plt.title("Predict actual {} power with {}".format(label_name[i], self.opt.used_frame))
- # self.logger.info("The predicted power {} for the last {} point(s) is: ".format(label_name[i], self.opt.predict_points) +
- # str(np.squeeze(predict_data[-self.opt.predict_points:, i])))
- if self.opt.do_figure_save:
- plt.savefig(self.opt.figure_save_path+"{}predict_{}_with_{}.png".format(self.opt.continue_flag, label_name[i], self.opt.used_frame))
- plt.show()
- def tangle_results(self):
- pass
|