12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # time: 2023/3/17 14:46
- # file: config.py
- # author: David
- # company: shenyang JY
- import yaml
- import argparse
- class myargparse(argparse.ArgumentParser):
- def __init__(self, discription, add_help):
- super(myargparse, self).__init__(description=discription, add_help=add_help)
- # default_config_parser = parser = argparse.ArgumentParser(
- # description='Training Config', add_help=False)
- self.add_argument(
- '-c',
- '--config_yaml',
- default=
- 'config.yml',
- type=str,
- metavar='FILE',
- help='YAML config file specifying default arguments')
- feature_columns = ['C_TIME', 'C_REAL_VALUE', 'C_FP_VALUE']
- # feature_columns = list(range(1, 28))
- label_columns = ['C_REAL_VALUE']
- label_in_feature_index = (lambda x, y: [x.index(i) for i in y])(feature_columns, label_columns) # 因为feature不一定从0开始
- # 在控制台可以指定的参数, yml中没有
- self.add_argument('--feature_columns', type=list, default=feature_columns, help='要作为特征的列')
- self.add_argument('--label_columns', type=list, default=label_columns, help='要预测的列')
- self.add_argument('--label_in_feature_index', type=list, default=label_in_feature_index, help='标签在特征列的索引')
- self.add_argument('--input_size', type=int, default=len(feature_columns), help='输入维度')
- self.add_argument('--output_size', type=int, default=len(label_columns), help='输出维度')
- self.add_argument("--train_data_path", type=str, default=None,help='数据集地址') # train_data_path yml中有
- # model_name 和 model_save_path 这两个参数根据yml中的参数拼接而成
- self.add_argument('--model_name', type=str, default=None, help='模型名称')
- self.add_argument('--model_save_path', type=str, default=None, help='模型保存地址')
- def _init_dir(self, opt):
- import os, time
- # 在这里给opt赋值
- opt.model_name = "model_" + opt.continue_flag + opt.used_frame + opt.model_postfix[opt.used_frame]
- opt.model_save_path = './checkpoint/' + opt.model_name + "/"
- if not os.path.exists(opt.model_save_path):
- os.makedirs(opt.model_save_path) # makedirs 递归创建目录
- if not os.path.exists(opt.figure_save_path):
- os.mkdir(opt.figure_save_path)
- if opt.do_train and (opt.do_log_save_to_file or opt.do_train_visualized):
- cur_time = time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime())
- log_save_path = opt.log_save_path + cur_time + '_' + opt.used_frame + "/"
- os.makedirs(log_save_path)
- # YAML should override the argparser's content
- def _parse_args_and_yaml(self):
- given_configs, remaining = self.parse_known_args()
- if given_configs.config_yaml:
- with open(given_configs.config_yaml, 'r', encoding='utf-8') as f:
- cfg = yaml.safe_load(f)
- self.set_defaults(**cfg)
- # The main arg parser parses the rest of the args, the usual
- # defaults will have been overridden if config file specified.
- opt = self.parse_args(remaining)
- self._init_dir(opt)
- # Cache the args as a text string to save them in the output dir later
- opt_text = yaml.safe_dump(opt.__dict__, default_flow_style=False)
- return opt, opt_text
- def parse_args_and_yaml(self):
- return self._parse_args_and_yaml()[0]
- if __name__ == "__main__":
- # opt = _parse_args_and_yaml()
- pass
|