run_case1.py 2.0 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. # -*- coding: UTF-8 -*-
  2. import numpy as np
  3. import os
  4. import sys
  5. import time
  6. from figure import Figure
  7. from dataset import DataSet
  8. from logger import load_logger
  9. from config import myargparse
  10. frame = "keras"
  11. if frame == "keras":
  12. from model.model_keras import train, predict
  13. os.environ["TF_CPP_MIN_LOG_LEVEL"] = '3'
  14. else:
  15. raise Exception("Wrong frame seletion")
  16. def main():
  17. parse = myargparse(discription="training config", add_help=False)
  18. opt = parse.parse_args_and_yaml()
  19. logger = load_logger(opt)
  20. try:
  21. np.random.seed(opt.Model["random_seed"])
  22. # 在这里获取数据集
  23. ds = DataSet(opt=opt)
  24. if opt.do_train:
  25. train_X, valid_X, train_Y, valid_Y = ds.get_train_and_valid_data(case=2)
  26. train(opt, [train_X, train_Y, valid_X, valid_Y])
  27. if opt.do_predict:
  28. test_X, test_Y, dq_Y = ds.get_test_data(return_label_data=True)
  29. result = predict(opt, test_X) # 这里输出的是未还原的归一化预测数据
  30. fig = Figure(opt, logger, ds)
  31. fig.draw(test_Y, dq_Y, result)
  32. except Exception:
  33. logger.error("Run Error", exc_info=True)
  34. if __name__=="__main__":
  35. import argparse
  36. # argparse方便于命令行下输入参数,可以根据需要增加更多
  37. # parser = argparse.ArgumentParser()
  38. # parser.add_argument("-t", "--do_train", default=False, type=bool, help="whether to train")
  39. # parser.add_argument("-p", "--do_predict", default=True, type=bool, help="whether to train")
  40. # parser.add_argument("-b", "--batch_size", default=64, type=int, help="batch size")
  41. # parser.add_argument("-e", "--epoch", default=20, type=int, help="epochs num")
  42. # args = parser.parse_args()
  43. # con = Config()
  44. # for key in dir(args): # dir(args) 函数获得args所有的属性
  45. # if not key.startswith("_"): # 去掉 args 自带属性,比如__name__等
  46. # setattr(con, key, getattr(args, key)) # 将属性值赋给Config
  47. main()