test.py 1.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # time: 2023/4/11 15:58
  4. # file: test.py
  5. # author: David
  6. # company: shenyang JY
  7. import pandas as pd
  8. import numpy as np
  9. # index = pd.date_range('1/1/2000', periods=9, freq='T')
  10. # series = pd.Series(range(9), index=index)
  11. # df = pd.DataFrame({'value': series})
  12. # series1 = series.resample('3T').sum()
  13. # series2 = series.resample('3T', label='right').sum()
  14. # series3 = series.resample('3T', label='right', closed='right').sum()
  15. # series4 = series.resample('30S').asfreq()
  16. # series5 = series.resample('30S').bfill()
  17. # print(series)
  18. # print(series1)
  19. # print(series2)
  20. # print(series3)
  21. # print(series4)
  22. # print("---", series5)
  23. # x = np.random.randint(1,100,20).reshape((10,2))
  24. # print(x)
  25. # from sklearn.model_selection import train_test_split
  26. #
  27. # x_train, x_test = train_test_split(x, test_size=0.2, random_state=1, shuffle=False)
  28. # print("x_train", x_train)
  29. # print("x_test", x_test)
  30. import numpy as np
  31. import pandas as pd
  32. #创建一组数据
  33. data = {'name': ['John', 'Mike', 'Mozla', 'Rose', 'David', 'Marry', 'Wansi', 'Sidy', 'Jack', 'Alic'],
  34. 'age': [20, 32, 29, np.nan, 15, 28, 21, 30, 37, 25],
  35. 'gender': [0, 0, 1, 1, 0, 1, 0, 0, 1, 1],
  36. 'isMarried': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']}
  37. label = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
  38. df = pd.DataFrame(data, index=label)
  39. print(df.loc[:,'name'])
  40. pass