Model: batch_size: 64 dropout_rate: 0.2 epoch: 50 hidden_size: 64 learning_rate: 0.001 lstm_layers: 2 patience: 5 random_seed: 42 time_step: 16 add_train: false cap: 50 continue_flag: 'xiushui' data_format: cdq: cdq.csv dq: dq.csv test: xiushui_test.csv envir: envir.xlsx nwp: xiushui_train.csv rp: rp.xlsx rp1: power.csv debug_model: false debug_num: 500 do_continue_train: false do_figure_save: false do_log_print_to_screen: true do_log_save_to_file: true do_predict: true do_train: true do_train_visualized: true electricType: E1 envir_columns: 16 excel_data_path: ./data/xiushui/xiushui15/ figure_save_path: ./figure/ formulaType: DAY_SHORT_ACCURACY is_continuous_predict: true is_photovoltaic: true log_save_path: ./log/ model_postfix: keras: .h5 pytorch: .pthc tensorflow: .ckpt predict_point: 0 province: E13 save_frame: lstm shuffle_train_data: false stationCode: J00301 train_data_path: ./data/ train_data_rate: 0.9 use_cuda: false used_frame: keras valid_data_rate: 0.15