#!/usr/bin/env python # -*- coding: utf-8 -*- # time: 2023/3/20 15:19 # file: figure.py # author: David # company: shenyang JY import sys import numpy as np import matplotlib.pyplot as plt class Figure(object): def __init__(self, opt, logger, process): self.opt = opt self.ds = process self.logger = logger def get_16_points(self, results): # results为模型预测的一维数组,遍历,取每16个点的最后一个点 preds = [] for res in results: preds.append(res[-1]) return np.array(preds) def draw(self, label_data, predict_norm_data, numbers): # label_data = origin_data.data[origin_data.train_num + origin_data.start_num_in_test : , # config.label_in_feature_index] # dq_data = dq_data.reshape((-1, self.opt.output_size)) predict_norm_data = self.get_16_points(predict_norm_data) label_data = self.get_16_points(label_data) label_data = label_data.reshape((-1, self.opt.output_size)) # label_data 要进行反归一化 label_data = label_data * self.ds.std[self.opt.label_in_feature_index] + \ self.ds.mean[self.opt.label_in_feature_index] predict_data = predict_norm_data * self.ds.std[self.opt.label_in_feature_index] + \ self.ds.mean[self.opt.label_in_feature_index] # 通过保存的均值和方差还原数据 # dq_data = dq_data * self.ds.std[0] + self.ds.mean[0] # predict_data = predict_norm_data assert label_data.shape[0] == predict_data.shape[0], "The element number in origin and predicted data is different" label_name = [self.ds.tables_column_name[i] for i in self.opt.label_in_feature_index] label_column_num = len(self.opt.label_columns) # label 和 predict 是错开config.predict_day天的数据的 # 下面是两种norm后的loss的计算方式,结果是一样的,可以简单手推一下 # label_norm_data = origin_data.norm_data[origin_data.train_num + origin_data.start_num_in_test:, # config.label_in_feature_index] # loss_norm = np.mean((label_norm_data[config.predict_day:] - predict_norm_data[:-config.predict_day]) ** 2, axis=0) # logger.info("The mean squared error of stock {} is ".format(label_name) + str(loss_norm)) loss = np.sum((label_data - predict_data) ** 2)/len(label_data) # mse # loss = np.mean((label_data - predict_data) ** 2, axis=0) loss_sqrt = np.sqrt(loss) # rmse loss_norm = 1 - loss_sqrt / self.opt.cap # loss_norm = loss/(ds.std[opt.label_in_feature_index] ** 2) self.logger.info("The mean squared error of power {} is ".format(label_name) + str(loss_norm)) # loss1 = np.sum((label_data - dq_data) ** 2) / len(label_data) # mse # loss_sqrt1 = np.sqrt(loss1) # rmse # loss_norm1 = 1 - loss_sqrt1 / self.opt.cap # self.logger.info("The mean squared error1 of power {} is ".format(label_name) + str(loss_norm1)) if self.opt.is_continuous_predict: # label_X = range(int((self.ds.data_num - self.ds.train_num - 32))) label_X = list(range(numbers)) else: label_X = range(int((self.ds.data_num - self.ds.train_num - self.ds.start_num_in_test)/2)) print("label_x = ", label_X) predict_X = [x for x in label_X] if not sys.platform.startswith('linux'): # 无桌面的Linux下无法输出,如果是有桌面的Linux,如Ubuntu,可去掉这一行 for i in range(label_column_num): plt.figure(i+1) # 预测数据绘制 plt.plot(label_X, label_data[:, i], label='label', color='b') plt.plot(predict_X, predict_data[:, i], label='predict', color='g') # plt.plot(predict_X, dq_data[:, i], label='dq', color='y') # plt.title("Predict actual {} power with {}".format(label_name[i], self.opt.used_frame)) self.logger.info("The predicted power {} for the last {} point(s) is: ".format(label_name[i], self.opt.predict_points) + str(np.squeeze(predict_data[-self.opt.predict_points:, i]))) if self.opt.do_figure_save: plt.savefig(self.opt.figure_save_path+"{}predict_{}_with_{}.png".format(self.opt.continue_flag, label_name[i], opt.used_frame)) plt.show()