#!/usr/bin/env python # -*- coding: utf-8 -*- # time: 2023/4/11 15:58 # file: test.py # author: David # company: shenyang JY import pandas as pd import numpy as np # index = pd.date_range('1/1/2000', periods=9, freq='T') # series = pd.Series(range(9), index=index) # df = pd.DataFrame({'value': series}) # series1 = series.resample('3T').sum() # series2 = series.resample('3T', label='right').sum() # series3 = series.resample('3T', label='right', closed='right').sum() # series4 = series.resample('30S').asfreq() # series5 = series.resample('30S').bfill() # print(series) # print(series1) # print(series2) # print(series3) # print(series4) # print("---", series5) # x = np.random.randint(1,100,20).reshape((10,2)) # print(x) # from sklearn.model_selection import train_test_split # # x_train, x_test = train_test_split(x, test_size=0.2, random_state=1, shuffle=False) # print("x_train", x_train) # print("x_test", x_test) import numpy as np import pandas as pd #创建一组数据 data = {'name': ['John', 'Mike', 'Mozla', 'Rose', 'David', 'Marry', 'Wansi', 'Sidy', 'Jack', 'Alic'], 'age': [20, 32, 29, np.nan, 15, 28, 21, 30, 37, 25], 'gender': [0, 0, 1, 1, 0, 1, 0, 0, 1, 1], 'isMarried': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']} label = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] df = pd.DataFrame(data, index=label) print(df.loc[:,'name']) pass