#!/usr/bin/env python # -*- coding: utf-8 -*- # time: 2023/3/20 9:23 # file: run_case_history.py # author: David # company: shenyang JY class Data: def __init__(self, config): self.config = config self.data, self.data_column_name = self.read_data() self.data_num = self.data.shape[0] self.train_num = int(self.data_num * self.config.train_data_rate) self.mean = np.mean(self.data, axis=0) # 数据的均值和方差 self.std = np.std(self.data, axis=0) self.norm_data = (self.data - self.mean)/self.std # 归一化,去量纲 self.start_num_in_test = 0 # 测试集中前几天的数据会被删掉,因为它不够一个time_step def read_data(self): # 读取初始数据 if self.config.debug_mode: init_data = pd.read_csv(self.config.train_data_path, nrows=self.config.debug_num, usecols=self.config.feature_columns) else: init_data = pd.read_csv(self.config.train_data_path, usecols=self.config.feature_columns) init_data = self.filter_data(init_data) return init_data.values, init_data.columns.tolist() # .columns.tolist() 是获取列名 def filter_data(self, init_data): return init_data[init_data.apply(np.sum, axis=1)!=0] def get_train_and_valid_data(self): feature_data = self.norm_data[:self.train_num] label_data = self.norm_data[: self.train_num, self.config.label_in_feature_index] # 将延后几天的数据作为label if not self.config.do_continue_train: # 在非连续训练模式下,每time_step行数据会作为一个样本,两个样本错开一行,比如:1-20行,2-21行。。。。 train_x, train_y = [], [] for i in range(self.train_num-self.config.time_step*2): p1 = feature_data[:, 0][i:i+self.config.start_predict_point] p2 = feature_data[:, 1][i+self.config.start_predict_point:i+self.config.start_predict_point*2] p = [list(t) for t in zip(p1, p2)] # 实际功率, 预测功率 是一组特征值 l = label_data[i+self.config.start_predict_point:i+self.config.start_predict_point*2] train_x.append(p) train_y.append(l) # train_x = [feature_data[i:i+self.config.time_step] for i in range(self.train_num-self.config.time_step)] # train_y = [label_data[i+self.config.start_predict_point:i+self.config.time_step] for i in range(self.train_num-self.config.time_step)] # 这里选取后16个点 作为 预测及 else: # 在连续训练模式下,每time_step行数据会作为一个样本,两个样本错开time_step行, # 比如:1-20行,21-40行。。。到数据末尾,然后又是 2-21行,22-41行。。。到数据末尾,…… # 这样才可以把上一个样本的final_state作为下一个样本的init_state,而且不能shuffle # 目前本项目中仅能在pytorch的RNN系列模型中用 train_x = [feature_data[start_index + i*self.config.time_step : start_index + (i+1)*self.config.time_step] for start_index in range(self.config.time_step) for i in range((self.train_num - start_index) // self.config.time_step)] train_y = [label_data[start_index + i*self.config.time_step : start_index + (i+1)*self.config.time_step] for start_index in range(self.config.time_step) for i in range((self.train_num - start_index) // self.config.time_step)] train_x, train_y = np.array(train_x), np.array(train_y) train_x, valid_x, train_y, valid_y = train_test_split(train_x, train_y, test_size=self.config.valid_data_rate, random_state=self.config.random_seed, shuffle=self.config.shuffle_train_data) # 划分训练和验证集,并打乱 return train_x, valid_x, train_y, valid_y class Config: # 数据参数 # feature_columns = list(range(2, 9)) # 要作为feature的列,按原数据从0开始计算,也可以用list 如 [2,4,6,8] 设置 feature_columns = list(range(1, 3)) # label_columns = [4, 5] # 要预测的列,按原数据从0开始计算, 如同时预测第四,五列 最低价和最高价 label_columns = [1] # label_in_feature_index = [feature_columns.index(i) for i in label_columns] # 这样写不行 label_in_feature_index = (lambda x,y: [x.index(i) for i in y])(feature_columns, label_columns) # 因为feature不一定从0开始 predict_day = 1 # 预测未来几天 predict_points = 16 # 网络参数 input_size = len(feature_columns) output_size = len(label_columns) hidden_size = 128 # LSTM的隐藏层大小,也是输出大小 lstm_layers = 2 # LSTM的堆叠层数 dropout_rate = 0.2 # dropout概率 time_step = 16 # 这个参数很重要,是设置用前多少个点的数据来预测,也是LSTM的time step数,请保证训练数据量大于它 start_predict_point = 16 # 训练参数 do_train = True do_predict = True add_train = False # 是否载入已有模型参数进行增量训练 shuffle_train_data = False # 是否对训练数据做shuffle use_cuda = False # 是否使用GPU训练 train_data_rate = 0.95 # 训练数据占总体数据比例,测试数据就是 1-train_data_rate valid_data_rate = 0.15 # 验证数据占训练数据比例,验证集在训练过程使用,为了做模型和参数选择 batch_size = 64 learning_rate = 0.001 epoch = 20 # 整个训练集被训练多少遍,不考虑早停的前提下 patience = 5 # 训练多少epoch,验证集没提升就停掉 random_seed = 42 # 随机种子,保证可复现 do_continue_train = False # 每次训练把上一次的final_state作为下一次的init_state,仅用于RNN类型模型,目前仅支持pytorch continue_flag = "" # 但实际效果不佳,可能原因:仅能以 batch_size = 1 训练 if do_continue_train: shuffle_train_data = False batch_size = 1 continue_flag = "continue_" # 训练模式 debug_mode = False # 调试模式下,是为了跑通代码,追求快 debug_num = 500 # 仅用debug_num条数据来调试 # 框架参数 used_frame = frame # 选择的深度学习框架,不同的框架模型保存后缀不一样 model_postfix = {"pytorch": ".pth", "keras": ".h5", "tensorflow": ".ckpt"} model_name = "model_" + continue_flag + used_frame + model_postfix[used_frame] # 路径参数 train_data_path = "./data/J00285.csv" model_save_path = "./checkpoint/" + used_frame + "/" figure_save_path = "./figure/" log_save_path = "./log/" do_log_print_to_screen = True do_log_save_to_file = True # 是否将config和训练过程记录到log do_figure_save = False do_train_visualized = False # 训练loss可视化,pytorch用visdom,tf用tensorboardX,实际上可以通用, keras没有 if not os.path.exists(model_save_path): os.makedirs(model_save_path) # makedirs 递归创建目录 if not os.path.exists(figure_save_path): os.mkdir(figure_save_path) if do_train and (do_log_save_to_file or do_train_visualized): cur_time = time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime()) log_save_path = log_save_path + cur_time + '_' + used_frame + "/" os.makedirs(log_save_path)