# -*- coding: UTF-8 -*- import numpy as np import os from data_process import data_process from data_features import data_features from logger import load_logger from config import myargparse from data_analyse import data_analyse frame = "keras" if frame == "keras": from model.model_keras import train, predict os.environ["TF_CPP_MIN_LOG_LEVEL"] = '3' else: raise Exception("Wrong frame seletion") def main(): parse = myargparse(discription="training config", add_help=False) opt = parse.parse_args_and_yaml() logger = load_logger(opt) try: np.random.seed(opt.Model["random_seed"]) process = data_process(opt=opt) dfs = process.get_processed_data() features = data_features(opt=opt, mean=process.mean, std=process.std) if opt.do_train: train_X, valid_X, train_Y, valid_Y = features.get_train_data([dfs[0][:'2021/8/1'], dfs[1][:'2022/3/1']]) train(opt, [train_X, train_Y, valid_X, valid_Y]) if opt.do_predict: test_X, test_Y, df_Y = features.get_test_data([dfs[0]['2021/8/1':'2021/9/6'], dfs[1]['2022/3/1':'2022/4/4']]) result = predict(opt, test_X) # 这里输出的是未还原的归一化预测数据 analyse = data_analyse(opt, logger, process) analyse.predict_acc(result, df_Y) except Exception: logger.error("Run Error", exc_info=True) if __name__ == "__main__": import argparse # argparse方便于命令行下输入参数,可以根据需要增加更多 # parser = argparse.ArgumentParser() # parser.add_argument("-t", "--do_train", default=False, type=bool, help="whether to train") # parser.add_argument("-p", "--do_predict", default=True, type=bool, help="whether to train") # parser.add_argument("-b", "--batch_size", default=64, type=int, help="batch size") # parser.add_argument("-e", "--epoch", default=20, type=int, help="epochs num") # args = parser.parse_args() # con = Config() # for key in dir(args): # dir(args) 函数获得args所有的属性 # if not key.startswith("_"): # 去掉 args 自带属性,比如__name__等 # setattr(con, key, getattr(args, key)) # 将属性值赋给Config main()