# -*- coding: UTF-8 -*- import numpy as np import os import sys import time from figure import Figure from dataset import DataSet from logger import load_logger from config import myargparse frame = "keras" if frame == "keras": from model.model_keras import train, predict os.environ["TF_CPP_MIN_LOG_LEVEL"] = '3' else: raise Exception("Wrong frame seletion") def main(): parse = myargparse(discription="training config", add_help=False) opt = parse.parse_args_and_yaml() logger = load_logger(opt) try: np.random.seed(opt.Model["random_seed"]) # 在这里获取数据集 ds = DataSet(opt=opt) if opt.do_train: train_X, valid_X, train_Y, valid_Y = ds.get_train_and_valid_data(case=2) train(opt, [train_X, train_Y, valid_X, valid_Y]) if opt.do_predict: test_X, test_Y, dq_Y = ds.get_test_data(return_label_data=True) result = predict(opt, test_X) # 这里输出的是未还原的归一化预测数据 fig = Figure(opt, logger, ds) fig.draw(test_Y, dq_Y, result) except Exception: logger.error("Run Error", exc_info=True) if __name__=="__main__": import argparse # argparse方便于命令行下输入参数,可以根据需要增加更多 # parser = argparse.ArgumentParser() # parser.add_argument("-t", "--do_train", default=False, type=bool, help="whether to train") # parser.add_argument("-p", "--do_predict", default=True, type=bool, help="whether to train") # parser.add_argument("-b", "--batch_size", default=64, type=int, help="batch size") # parser.add_argument("-e", "--epoch", default=20, type=int, help="epochs num") # args = parser.parse_args() # con = Config() # for key in dir(args): # dir(args) 函数获得args所有的属性 # if not key.startswith("_"): # 去掉 args 自带属性,比如__name__等 # setattr(con, key, getattr(args, key)) # 将属性值赋给Config main()