# -*- coding: UTF-8 -*- from keras.layers import Input, Dense, LSTM, concatenate, Conv1D, Conv2D, MaxPooling1D, Reshape, Flatten from keras.models import Model, load_model from keras.callbacks import ModelCheckpoint, EarlyStopping from keras import optimizers from keras.callbacks import TensorBoard import matplotlib.pyplot as plt import numpy as np from keras.callbacks import TensorBoard, EarlyStopping # model_history = model.fit_generator(train_generator, epochs=30, validation_data=evaluate_generator, # callbacks=[early_stopping, tbCallBack]) def get_keras_model(opt): lstm_input = Input(shape=(opt.Model['time_step'], opt.input_size_lstm)) lstm = lstm_input for i in range(opt.Model['lstm_layers']): rs = True if i == opt.Model['lstm_layers']-1: rs = False lstm = LSTM(units=opt.Model['hidden_size'], return_sequences=rs)(lstm) lstm = Dense(16)(lstm) # lstm = Flatten()(lstm) # lstm = concatenate([lstm, cnn]) # lstm = Dense(16)(lstm) # lstm = Flatten()(lstm) # output = Dense(opt.output_size)(lstm) model = Model(lstm_input, lstm) adam = optimizers.adam(lr=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=True) model.compile(loss='mse', optimizer='adam') return model def train_init(use_cuda=False): import tensorflow as tf from keras.backend.tensorflow_backend import set_session if use_cuda: # gpu init sess_config = tf.ConfigProto(log_device_placement=True, allow_soft_placement=True) sess_config.gpu_options.per_process_gpu_memory_fraction = 0.7 # 最多使用70%GPU内存 sess_config.gpu_options.allow_growth=True # 初始化时不全部占满GPU显存, 按需分配 sess = tf.Session(config=sess_config) set_session(sess) else: session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) tf.set_random_seed(1234) sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) set_session(sess) def train(opt, train_and_valid_data): train_init(opt.use_cuda) train_X, train_Y, valid_X, valid_Y = train_and_valid_data print("----------", np.array(train_X[0]).shape) print("++++++++++", np.array(train_X[1]).shape) model = get_keras_model(opt) model.summary() weight_lstm_1, bias_lstm_1 = model.get_layer('dense_1').get_weights() print("weight_lstm_1 = ", weight_lstm_1) print("bias_lstm_1 = ", bias_lstm_1) if opt.add_train: model.load_weights(opt.model_save_path + 'model_kerass.h5') check_point = ModelCheckpoint(filepath=opt.model_save_path + opt.save_name, monitor='val_loss', save_best_only=True, mode='auto') early_stop = EarlyStopping(monitor='val_loss', patience=opt.Model['patience'], mode='auto') history = model.fit(train_X, train_Y, batch_size=opt.Model['batch_size'], epochs=opt.Model['epoch'], verbose=2, validation_data=(valid_X, valid_Y), callbacks=[check_point, early_stop]) # acc = history.history['acc'] loss = history.history['loss'] epochs = range(1, len(loss) + 1) plt.title('Loss') # plt.plot(epochs, acc, 'red', label='Training acc') plt.plot(epochs, loss, 'blue', label='Validation loss') plt.legend() # plt.show() def predict(config, test_X): model = get_keras_model(config) model.load_weights(config.model_save_path + config.save_name) result = model.predict(test_X, batch_size=1) # result = result.reshape((-1, config.output_size)) return result def predict_cls(config, test_X, df_Y): results, results1, results2, results3, results4 = [], [], [], [], [] dfy1, dfy2, dfy3, dfy4 = [], [], [],[] model = get_keras_model(config) model1 = get_keras_model(config) for i, X in enumerate(zip(test_X[0], test_X[1])): X = [np.array([X[0]]), np.array([X[1]])] # X = np.array([X[1]]) print("label=", df_Y[i]['label'][0]) if df_Y[i]['label'][0] == 1: model1.load_weights('./checkpoint/model_keras.h5/' + 'model_keras1.h5') result = model1.predict(X, batch_size=1) results1.append(result[0]) results.append(result[0]) dfy1.append(df_Y[i]) elif df_Y[i]['label'][0] == 2: model.load_weights('./checkpoint/model_keras.h5/' + 'model_keras2.h5') result = model.predict(X, batch_size=1) results2.append(result[0]) results.append(result[0]) dfy2.append(df_Y[i]) elif df_Y[i]['label'][0] == 3: model.load_weights('./checkpoint/model_keras.h5/' + 'model_keras3.h5') result = model.predict(X, batch_size=1) results3.append(result[0]) results.append(result[0]) dfy3.append(df_Y[i]) elif df_Y[i]['label'][0] == 4: model.load_weights('./checkpoint/model_keras.h5/' + 'model_keras4.h5') result = model.predict(X, batch_size=1) results4.append(result[0]) results.append(result[0]) dfy4.append(df_Y[i]) # result = result.reshape((-1, config.output_size)) return np.array(results), np.array(results1), np.array(results2), np.array(results3), np.array(results4), dfy1, dfy2, dfy3, dfy4