# -*- coding: UTF-8 -*- from keras.layers import Input, Dense, LSTM, Lambda, concatenate, Conv1D, Conv2D, MaxPooling1D, Reshape, Flatten from keras.models import Model from keras.callbacks import ModelCheckpoint, EarlyStopping def get_keras_model(opt): lstm_input = Input(shape=(opt.predict_points, opt.input_size_lstm)) lstm = lstm_input for i in range(opt.Model['lstm_layers']): rs = True # if i == opt.Model['lstm_layers']-1: # rs = False lstm = LSTM(units=opt.Model['hidden_size'], dropout=opt.Model['dropout_rate'], return_sequences=rs)(lstm) output = Dense(1)(lstm) output = Flatten(data_format='channels_last')(output) lstm1 = lstm_input for i in range(opt.Model['lstm_layers']): rs = True # if i == opt.Model['lstm_layers']-1: # rs = False lstm1 = LSTM(units=opt.Model['hidden_size'], dropout=opt.Model['dropout_rate'], return_sequences=rs)(lstm1) output1 = Dense(1)(lstm1) output1 = Flatten(data_format='channels_last')(output1) outputs = Lambda(sum)([output, output1]) # outputs = Dense(opt.output_size)(outputs) model = Model(lstm_input, [output, output1]) # model = Model(lstm_input, outputs) model.compile(loss='mse', optimizer='adam') # metrics=["mae"] return model def gpu_train_init(): import tensorflow as tf from keras.backend.tensorflow_backend import set_session sess_config = tf.ConfigProto(log_device_placement=True, allow_soft_placement=True) sess_config.gpu_options.per_process_gpu_memory_fraction = 0.7 # 最多使用70%GPU内存 sess_config.gpu_options.allow_growth=True # 初始化时不全部占满GPU显存, 按需分配 sess = tf.Session(config=sess_config) set_session(sess) def train(opt, train_and_valid_data): if opt.use_cuda: gpu_train_init() train_X, train_Y, valid_X, valid_Y = train_and_valid_data import numpy as np print("----------", np.array(train_X[0]).shape) print("++++++++++", np.array(train_X[1]).shape) model = get_keras_model(opt) model.summary() if opt.add_train: model.load_weights(opt.model_save_path + opt.model_name) check_point = ModelCheckpoint(filepath=opt.model_save_path + opt.model_name, monitor='val_loss', save_best_only=True, mode='auto') early_stop = EarlyStopping(monitor='val_loss', patience=opt.Model['patience'], mode='auto') model.fit(train_X, train_Y, batch_size=opt.Model['batch_size'], epochs=opt.Model['epoch'], verbose=2, validation_data=(valid_X, valid_Y), callbacks=[check_point, early_stop]) def predict(config, test_X): model = get_keras_model(config) model.load_weights(config.model_save_path + config.model_name) result = model.predict(test_X, batch_size=1) # result = result.reshape((-1, config.output_size)) return result