import math import torch from torch import nn from utils.Arg import Arg arg = Arg() class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) # class TimeSeriesTransformer(nn.Module): # def __init__(self, input_dim, output_dim, d_model, nhead, num_layers, dropout=0.1): # super().__init__() # self.input_dim = input_dim # self.output_dim = output_dim # self.pos_enc = PositionalEncoding(d_model, dropout) # self.lstm = nn.LSTM(input_dim, d_model, batch_first=True) # 添加LSTM层 # self.transformer = nn.Transformer(d_model, nhead, num_layers, dropout=dropout) # self.act = nn.GELU() # 尝试使用GELU作为激活函数 # self.hidden_dim = 128 # 定义一个隐藏层的维度 # self.linear = nn.Linear(d_model, self.hidden_dim) # self.output_proj = nn.Linear(self.hidden_dim, output_dim) # self.layer_norm = nn.LayerNorm(d_model) # # def forward(self, src, tgt): # src = self.pos_enc(src) # 在输入数据通过LSTM和Transformer之前,先进行位置编码 # src, _ = self.lstm(src) # tgt = self.pos_enc(tgt) # 在目标数据通过LSTM和Transformer之前,先进行位置编码 # tgt, _ = self.lstm(tgt) # # output = self.transformer(src, tgt) # output = self.layer_norm(output) # output = self.act(self.linear(output)) # output = self.output_proj(output) # output = output.squeeze(0) # return output class TimeSeriesTransformer(nn.Module): def __init__(self, input_dim, output_dim, d_model, nhead, num_layers, dropout=0.1): super().__init__() self.input_dim = input_dim self.output_dim = output_dim self.pos_enc = PositionalEncoding(d_model, dropout) self.transformer = nn.Transformer(d_model, nhead, num_layers, dropout=dropout) self.act = nn.GELU() # 尝试使用GELU作为激活函数 self.hidden_dim = 64 # 降低隐藏层维度 self.linear = nn.Linear(d_model, self.hidden_dim) self.output_proj = nn.Linear(self.hidden_dim, output_dim) self.layer_norm = nn.LayerNorm(d_model) self.sigmoid = nn.Tanh() def forward(self, src, tgt): src = self.pos_enc(src) # 在输入数据通过Transformer之前,先进行位置编码 tgt = self.pos_enc(tgt) # 在目标数据通过Transformer之前,先进行位置编码 output = self.transformer(src, tgt) output = self.layer_norm(output) output = self.act(self.linear(output)) output = self.output_proj(output) output = self.sigmoid(output.squeeze(0)) return output