123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # time: 2023/3/2 10:28
- # file: config.py
- # author: David
- # company: shenyang JY
- """
- 模型调参及系统功能配置
- """
- import argparse
- import pandas as pd
- from pathlib import Path
- from app.common.logs import logger, params
- """
- 调用思路
- xxxx 1. 从入口参数中获取IN OUT文件位置 xxxx
- 2. 按照训练和预测加载和解析数据
- 3. 对数据进行预处理
- 4. 执行训练,保存模型
- 5. 执行预测,输出结果
- """
- def material(input_file, isDq=True):
- basi, station_info_w, station_info_d_w, station_info_s, station_info_d_s, nwp_w, nwp_s, nwp_w_h, nwp_s_h, power = (
- 'DQYC_IN_BASIC.txt', 'DQYC_IN_PLANT_WIND.txt', 'DQYC_IN_PLANT_DETAIL_WIND.txt', 'DQYC_IN_PLANT_SOLAR.txt',
- 'DQYC_IN_PLANT_DETAIL_SOLAR.txt', 'DQYC_IN_FORECAST_WEATHER_WIND.txt', 'DQYC_IN_FORECAST_WEATHER_SOLAR.txt',
- 'DQYC_IN_FORECAST_WEATHER_WIND_H.txt', 'DQYC_IN_FORECAST_WEATHER_SOLAR_H.txt', 'DQYC_IN_HISTORY_POWER_LONG.txt')
- basi_area = 'DQYC_AREA_IN_BASIC'
- nwp_v, nwp_v_h = 'DQYC_IN_FORECAST_WEATHER.txt', 'DQYC_IN_FORECAST_WEATHER_H.txt'
- nwp_own, nwp_own_h = 'DQYC_IN_FORECAST_WEATHER_OWNER.txt', 'DQYC_IN_FORECAST_WEATHER_OWNER_H.txt',
- input_file = Path(input_file)
- basic = pd.read_csv(input_file / basi, sep=r'\s+', header=0)
- power = pd.read_csv(input_file / power, sep=r'\s+', header=0)
- plant_type = int(basic.loc[basic['PropertyID'].to_list().index(('PlantType')), 'Value'])
- if isDq:
- nwp_v = pd.read_csv(input_file / '0' / nwp_v, sep=r'\s+', header=0)
- nwp_v_h = pd.read_csv(input_file / '0' / nwp_v_h, sep=r'\s+', header=0)
- nwp_own = pd.read_csv(input_file / '1' / nwp_own, sep=r'\s+', header=0)
- nwp_own_h = pd.read_csv(input_file / '1' / nwp_own_h, sep=r'\s+', header=0)
- if params['switch_nwp_owner']:
- nwp_v, nwp_v_h = nwp_own, nwp_own_h
- # 如果是风电
- if plant_type == 0:
- station_info = pd.read_csv(input_file / station_info_w, sep=r'\s+', header=0)
- station_info_d = pd.read_csv(input_file / station_info_d_w, sep=r'\s+', header=0)
- nwp = pd.read_csv(input_file / nwp_w, sep=r'\s+', header=0)
- nwp_h = pd.read_csv(input_file / nwp_w_h, sep=r'\s+', header=0)
- return station_info, station_info_d, nwp, nwp_h, power, nwp_v, nwp_v_h
- # 如果是光伏
- elif plant_type == 1:
- station_info = pd.read_csv(input_file / station_info_s, sep=r'\s+', header=0)
- station_info_d = pd.read_csv(input_file / station_info_d_s, sep=r'\s+', header=0)
- nwp = pd.read_csv(input_file / nwp_s, sep=r'\s+', header=0)
- nwp_h = pd.read_csv(input_file / nwp_s_h, sep=r'\s+', header=0)
- return station_info, station_info_d, nwp, nwp_h, power, nwp_v, nwp_v_h
- else:
- # 区域级预测待定,可能需要遍历获取场站数据
- basic_area = pd.read_csv(input_file / basi_area, sep=r'\s+', header=0)
- return basic_area
- def input_file_handler(input_file: str, model_name: str):
- # DQYC:短期预测,qy:区域级
- if 'dqyc' in input_file.lower():
- station_info, station_info_d, nwp, nwp_h, power, nwp_v, nwp_v_h = material(input_file, True)
- cap = round(float(station_info['PlantCap'][0]), 2)
- # 含有predict,预测
- if 'predict' in input_file.lower():
- pre_data = nwp_v
- if model_name == 'fmi':
- from app.predict.tf_fmi_pre import model_prediction
- elif model_name == 'cnn':
- from app.predict.tf_cnn_pre import model_prediction
- else:
- from app.predict.tf_lstm_pre import model_prediction
- model_prediction(pre_data, input_file, cap)
- else:
- logger.info("预测路径错误!")
- else:
- # 区域级预测:未完
- # basic_area = material(input_file, False)
- logger.info("区域级预测待开放。")
- def main():
- # 创建解析器对象
- parser = argparse.ArgumentParser(description="程序描述")
- # 创建
- # 添加参数
- parser.add_argument("input_file", help="输入文件路径") # 第一个位置参数
- parser.add_argument("--model_name", default="cnn", help='选择短期模型') # 第二个位置参数(可选)
- # 解析参数
- args = parser.parse_args()
- # 使用参数
- print(f"文件: {args.input_file}")
- input_file_handler(args.input_file, args.model_name)
- if __name__ == "__main__":
- main()
|