south-forecast.2025-05-23.0.log 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361
  1. 2025-05-23 08:22:27,699 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  2. - _tfmw_add_deprecation_warning
  3. 2025-05-23 08:22:28,041 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  4. 2025-05-23 08:22:30,660 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  5. - _tfmw_add_deprecation_warning
  6. 2025-05-23 08:22:33,584 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  7. - _tfmw_add_deprecation_warning
  8. 2025-05-23 08:22:33,590 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  9. - _tfmw_add_deprecation_warning
  10. 2025-05-23 08:22:33,866 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  11. 2025-05-23 08:22:33,866 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  12. 2025-05-23 08:22:33,892 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  13. 2025-05-23 08:22:33,892 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  14. 2025-05-23 08:22:33,900 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  15. 2025-05-23 08:22:33,900 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  16. 2025-05-23 08:22:33,937 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  17. 2025-05-23 08:22:33,937 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  18. 2025-05-23 08:22:33,937 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  19. 2025-05-23 08:22:33,937 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  20. 2025-05-23 08:22:33,937 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  21. 2025-05-23 08:22:33,937 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  22. 2025-05-23 08:22:34,920 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  23. 2025-05-23 08:22:34,920 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  24. 2025-05-23 08:22:34,937 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  25. 2025-05-23 08:22:34,937 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  26. 2025-05-23 08:22:49,417 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  27. 2025-05-23 08:22:49,417 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  28. 2025-05-23 08:22:49,418 - tf_lstm.py - INFO - 训练集损失函数为:[8.9987e-01 3.1557e-01 9.8220e-02 2.7320e-02 7.0100e-03 1.9300e-03
  29. 8.2000e-04 6.0000e-04 5.5000e-04 5.5000e-04 5.4000e-04 5.4000e-04
  30. 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
  31. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  32. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  33. 5.3000e-04 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  34. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  35. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  36. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  37. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  38. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  39. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  40. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  41. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  42. 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  43. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  44. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  45. 2025-05-23 08:22:49,418 - tf_lstm.py - INFO - 训练集损失函数为:[8.9367e-01 3.1262e-01 9.6830e-02 2.6540e-02 6.4300e-03 1.4200e-03
  46. 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  47. 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  48. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  49. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  50. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  51. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  52. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  53. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  54. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  55. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  56. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  57. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  58. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  59. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  60. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  61. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  62. 2025-05-23 08:22:49,418 - tf_lstm.py - INFO - 验证集损失函数为:[0.51006 0.16613 0.04846 0.01297 0.00362 0.00146 0.00101 0.00092 0.00091
  63. 0.0009 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087
  64. 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086
  65. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085
  66. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  67. 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
  68. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  69. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  70. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  71. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  72. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  73. 0.00082] - training
  74. 2025-05-23 08:22:49,418 - tf_lstm.py - INFO - 验证集损失函数为:[5.0543e-01 1.6387e-01 4.7130e-02 1.1960e-02 2.7300e-03 6.1000e-04
  75. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  76. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  77. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  78. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  79. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  80. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  81. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  82. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  83. 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  84. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  85. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  86. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  87. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  88. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  89. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  90. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  91. 2025-05-23 08:22:49,454 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682fbfd9db527f0bfe137dbd - insert_trained_model_into_mongo
  92. 2025-05-23 08:22:49,467 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682fbfd99a32f7c1241a3c80 - insert_trained_model_into_mongo
  93. 2025-05-23 08:22:49,476 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682fbfd99a32f7c1241a3c82 - insert_scaler_model_into_mongo
  94. 2025-05-23 08:22:49,488 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682fbfd9db527f0bfe137dbf - insert_scaler_model_into_mongo
  95. 2025-05-23 08:22:50,948 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  96. 2025-05-23 08:22:50,948 - task_worker.py - ERROR - Area 1002 failed: 'station_id' - region_task
  97. 2025-05-23 08:28:12,866 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  98. - _tfmw_add_deprecation_warning
  99. 2025-05-23 08:28:12,981 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  100. 2025-05-23 08:28:15,622 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  101. - _tfmw_add_deprecation_warning
  102. 2025-05-23 08:28:18,516 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  103. - _tfmw_add_deprecation_warning
  104. 2025-05-23 08:28:18,524 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  105. - _tfmw_add_deprecation_warning
  106. 2025-05-23 08:28:18,724 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  107. 2025-05-23 08:28:18,726 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  108. 2025-05-23 08:28:18,742 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  109. 2025-05-23 08:28:18,749 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  110. 2025-05-23 08:28:18,750 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  111. 2025-05-23 08:28:18,757 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  112. 2025-05-23 08:28:18,778 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  113. 2025-05-23 08:28:18,778 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  114. 2025-05-23 08:28:18,779 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  115. 2025-05-23 08:28:18,784 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  116. 2025-05-23 08:28:18,784 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  117. 2025-05-23 08:28:18,785 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  118. 2025-05-23 08:28:19,722 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  119. 2025-05-23 08:28:19,724 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  120. 2025-05-23 08:28:19,729 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  121. 2025-05-23 08:28:19,730 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  122. 2025-05-23 08:28:32,613 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  123. 2025-05-23 08:28:32,614 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  124. 2025-05-23 08:28:32,614 - tf_lstm.py - INFO - 训练集损失函数为:[8.9933e-01 3.1451e-01 9.7470e-02 2.6750e-02 6.5000e-03 1.4300e-03
  125. 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  126. 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
  127. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  128. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  129. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  130. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  131. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  132. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  133. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  134. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  135. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  136. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  137. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  138. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  139. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  140. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  141. 2025-05-23 08:28:32,614 - tf_lstm.py - INFO - 验证集损失函数为:[5.0852e-01 1.6489e-01 4.7480e-02 1.2060e-02 2.7600e-03 6.1000e-04
  142. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  143. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  144. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  145. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  146. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  147. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  148. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  149. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05
  150. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  151. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  152. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  153. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  154. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  155. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  156. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  157. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  158. 2025-05-23 08:28:32,614 - tf_lstm.py - INFO - 训练集损失函数为:[8.9252e-01 3.1244e-01 9.7110e-02 2.6970e-02 6.9100e-03 1.9100e-03
  159. 8.1000e-04 5.9000e-04 5.5000e-04 5.5000e-04 5.4000e-04 5.4000e-04
  160. 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
  161. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  162. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  163. 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  164. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  165. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  166. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  167. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  168. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  169. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  170. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  171. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  172. 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  173. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  174. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  175. 2025-05-23 08:28:32,614 - tf_lstm.py - INFO - 验证集损失函数为:[0.50531 0.16435 0.04786 0.01279 0.00357 0.00145 0.00101 0.00092 0.0009
  176. 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
  177. 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
  178. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085
  179. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  180. 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
  181. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  182. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  183. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  184. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  185. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  186. 0.00082] - training
  187. 2025-05-23 08:28:32,657 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682fc130b586703a111ee9bb - insert_trained_model_into_mongo
  188. 2025-05-23 08:28:32,692 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682fc130da054ff2159993e3 - insert_trained_model_into_mongo
  189. 2025-05-23 08:28:32,696 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682fc130b586703a111ee9bd - insert_scaler_model_into_mongo
  190. 2025-05-23 08:28:32,711 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682fc130da054ff2159993e5 - insert_scaler_model_into_mongo
  191. 2025-05-23 08:28:34,015 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  192. 2025-05-23 08:28:34,034 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  193. 2025-05-23 08:28:34,042 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  194. 2025-05-23 08:28:34,069 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  195. 2025-05-23 08:28:34,069 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  196. 2025-05-23 08:28:34,069 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  197. 2025-05-23 08:28:35,005 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  198. 2025-05-23 08:28:35,006 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  199. 2025-05-23 08:28:46,672 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  200. 2025-05-23 08:28:46,672 - tf_lstm.py - INFO - 训练集损失函数为:[9.1275e-01 3.2207e-01 1.0061e-01 2.7740e-02 6.7200e-03 1.4400e-03
  201. 2.8000e-04 5.0000e-05 1.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00
  202. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  203. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  204. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  205. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  206. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  207. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  208. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  209. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  210. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  211. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  212. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  213. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  214. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  215. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  216. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
  217. 2025-05-23 08:28:46,672 - tf_lstm.py - INFO - 验证集损失函数为:[5.1888e-01 1.6976e-01 4.9170e-02 1.2490e-02 2.8000e-03 5.6000e-04
  218. 1.0000e-04 2.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  219. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  220. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  221. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  222. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  223. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  224. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  225. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  226. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  227. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  228. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  229. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  230. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  231. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  232. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  233. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
  234. 2025-05-23 08:28:46,673 - tf_model_train.py - ERROR - Training failed: can only concatenate str (not "int") to str
  235. Traceback (most recent call last):
  236. File "E:\compete\app\model\tf_model_train.py", line 94, in train
  237. 'model_table': self.config['model_table'] + f'_{pre_type}_' + pre_id,
  238. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~
  239. TypeError: can only concatenate str (not "int") to str
  240. - _handle_error
  241. 2025-05-23 08:35:44,723 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  242. - _tfmw_add_deprecation_warning
  243. 2025-05-23 08:35:44,847 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  244. 2025-05-23 08:35:47,468 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  245. - _tfmw_add_deprecation_warning
  246. 2025-05-23 08:35:50,450 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  247. - _tfmw_add_deprecation_warning
  248. 2025-05-23 08:35:50,453 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  249. - _tfmw_add_deprecation_warning
  250. 2025-05-23 08:35:50,668 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  251. 2025-05-23 08:35:50,670 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  252. 2025-05-23 08:35:50,686 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  253. 2025-05-23 08:35:50,689 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  254. 2025-05-23 08:35:50,694 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  255. 2025-05-23 08:35:50,696 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  256. 2025-05-23 08:35:50,723 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  257. 2025-05-23 08:35:50,723 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  258. 2025-05-23 08:35:50,723 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  259. 2025-05-23 08:35:50,723 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  260. 2025-05-23 08:35:50,724 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  261. 2025-05-23 08:35:50,724 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  262. 2025-05-23 08:35:51,687 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  263. 2025-05-23 08:35:51,689 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  264. 2025-05-23 08:35:51,695 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  265. 2025-05-23 08:35:51,696 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  266. 2025-05-23 08:36:06,600 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  267. 2025-05-23 08:36:06,600 - tf_lstm.py - INFO - 训练集损失函数为:[9.0568e-01 3.1741e-01 9.8600e-02 2.7150e-02 6.6200e-03 1.4700e-03
  268. 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  269. 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
  270. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  271. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  272. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  273. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  274. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  275. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  276. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  277. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  278. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  279. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  280. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  281. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  282. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  283. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  284. 2025-05-23 08:36:06,601 - tf_lstm.py - INFO - 验证集损失函数为:[0.50575 0.165 0.04822 0.01292 0.00361 0.00145 0.00101 0.00092 0.0009
  285. 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
  286. 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
  287. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
  288. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  289. 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
  290. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  291. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  292. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  293. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  294. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  295. 0.00082] - training
  296. 2025-05-23 08:36:06,601 - tf_lstm.py - INFO - 验证集损失函数为:[5.1277e-01 1.6664e-01 4.8130e-02 1.2280e-02 2.8200e-03 6.3000e-04
  297. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  298. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  299. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  300. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  301. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  302. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  303. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  304. 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  305. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  306. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  307. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  308. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  309. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  310. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  311. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  312. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  313. 2025-05-23 08:36:06,647 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682fc2f63ef80176b2f4bf7e - insert_trained_model_into_mongo
  314. 2025-05-23 08:36:06,657 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682fc2f63ef80176b2f4bf80 - insert_scaler_model_into_mongo
  315. 2025-05-23 08:36:06,668 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682fc2f649c4c6cb3fd6c5b2 - insert_trained_model_into_mongo
  316. 2025-05-23 08:36:06,685 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682fc2f649c4c6cb3fd6c5b4 - insert_scaler_model_into_mongo
  317. 2025-05-23 08:36:08,118 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  318. 2025-05-23 08:36:08,137 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  319. 2025-05-23 08:36:08,145 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  320. 2025-05-23 08:36:08,172 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  321. 2025-05-23 08:36:08,172 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  322. 2025-05-23 08:36:08,173 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  323. 2025-05-23 08:36:09,113 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  324. 2025-05-23 08:36:09,114 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  325. 2025-05-23 08:36:22,336 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  326. 2025-05-23 08:36:22,337 - tf_lstm.py - INFO - 训练集损失函数为:[9.1068e-01 3.2140e-01 1.0044e-01 2.7720e-02 6.7200e-03 1.4400e-03
  327. 2.8000e-04 5.0000e-05 1.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00
  328. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  329. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  330. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  331. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  332. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  333. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  334. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  335. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  336. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  337. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  338. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  339. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  340. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  341. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  342. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
  343. 2025-05-23 08:36:22,337 - tf_lstm.py - INFO - 验证集损失函数为:[5.1778e-01 1.6943e-01 4.9120e-02 1.2490e-02 2.8000e-03 5.6000e-04
  344. 1.0000e-04 2.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  345. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  346. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  347. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  348. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  349. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  350. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  351. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  352. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  353. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  354. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  355. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  356. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  357. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  358. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  359. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
  360. 2025-05-23 08:36:22,426 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682fc3061866c0ded50f27e9 - insert_trained_model_into_mongo
  361. 2025-05-23 08:36:22,446 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682fc3061866c0ded50f27eb - insert_scaler_model_into_mongo