123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361 |
- 2025-05-23 08:22:27,699 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-23 08:22:28,041 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-23 08:22:30,660 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-23 08:22:33,584 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-23 08:22:33,590 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-23 08:22:33,866 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-23 08:22:33,866 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-23 08:22:33,892 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-23 08:22:33,892 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-23 08:22:33,900 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-23 08:22:33,900 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-23 08:22:33,937 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-23 08:22:33,937 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-23 08:22:33,937 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-23 08:22:33,937 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-23 08:22:33,937 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-23 08:22:33,937 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-23 08:22:34,920 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-23 08:22:34,920 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-23 08:22:34,937 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-23 08:22:34,937 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-23 08:22:49,417 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-23 08:22:49,417 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-23 08:22:49,418 - tf_lstm.py - INFO - 训练集损失函数为:[8.9987e-01 3.1557e-01 9.8220e-02 2.7320e-02 7.0100e-03 1.9300e-03
- 8.2000e-04 6.0000e-04 5.5000e-04 5.5000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-23 08:22:49,418 - tf_lstm.py - INFO - 训练集损失函数为:[8.9367e-01 3.1262e-01 9.6830e-02 2.6540e-02 6.4300e-03 1.4200e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-23 08:22:49,418 - tf_lstm.py - INFO - 验证集损失函数为:[0.51006 0.16613 0.04846 0.01297 0.00362 0.00146 0.00101 0.00092 0.00091
- 0.0009 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087
- 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-23 08:22:49,418 - tf_lstm.py - INFO - 验证集损失函数为:[5.0543e-01 1.6387e-01 4.7130e-02 1.1960e-02 2.7300e-03 6.1000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-23 08:22:49,454 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682fbfd9db527f0bfe137dbd - insert_trained_model_into_mongo
- 2025-05-23 08:22:49,467 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682fbfd99a32f7c1241a3c80 - insert_trained_model_into_mongo
- 2025-05-23 08:22:49,476 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682fbfd99a32f7c1241a3c82 - insert_scaler_model_into_mongo
- 2025-05-23 08:22:49,488 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682fbfd9db527f0bfe137dbf - insert_scaler_model_into_mongo
- 2025-05-23 08:22:50,948 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-23 08:22:50,948 - task_worker.py - ERROR - Area 1002 failed: 'station_id' - region_task
- 2025-05-23 08:28:12,866 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-23 08:28:12,981 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-23 08:28:15,622 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-23 08:28:18,516 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-23 08:28:18,524 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-23 08:28:18,724 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-23 08:28:18,726 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-23 08:28:18,742 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-23 08:28:18,749 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-23 08:28:18,750 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-23 08:28:18,757 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-23 08:28:18,778 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-23 08:28:18,778 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-23 08:28:18,779 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-23 08:28:18,784 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-23 08:28:18,784 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-23 08:28:18,785 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-23 08:28:19,722 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-23 08:28:19,724 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-23 08:28:19,729 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-23 08:28:19,730 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-23 08:28:32,613 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-23 08:28:32,614 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-23 08:28:32,614 - tf_lstm.py - INFO - 训练集损失函数为:[8.9933e-01 3.1451e-01 9.7470e-02 2.6750e-02 6.5000e-03 1.4300e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-23 08:28:32,614 - tf_lstm.py - INFO - 验证集损失函数为:[5.0852e-01 1.6489e-01 4.7480e-02 1.2060e-02 2.7600e-03 6.1000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-23 08:28:32,614 - tf_lstm.py - INFO - 训练集损失函数为:[8.9252e-01 3.1244e-01 9.7110e-02 2.6970e-02 6.9100e-03 1.9100e-03
- 8.1000e-04 5.9000e-04 5.5000e-04 5.5000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-23 08:28:32,614 - tf_lstm.py - INFO - 验证集损失函数为:[0.50531 0.16435 0.04786 0.01279 0.00357 0.00145 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-23 08:28:32,657 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682fc130b586703a111ee9bb - insert_trained_model_into_mongo
- 2025-05-23 08:28:32,692 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682fc130da054ff2159993e3 - insert_trained_model_into_mongo
- 2025-05-23 08:28:32,696 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682fc130b586703a111ee9bd - insert_scaler_model_into_mongo
- 2025-05-23 08:28:32,711 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682fc130da054ff2159993e5 - insert_scaler_model_into_mongo
- 2025-05-23 08:28:34,015 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-23 08:28:34,034 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-23 08:28:34,042 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-23 08:28:34,069 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-23 08:28:34,069 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-23 08:28:34,069 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-23 08:28:35,005 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-23 08:28:35,006 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-23 08:28:46,672 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-23 08:28:46,672 - tf_lstm.py - INFO - 训练集损失函数为:[9.1275e-01 3.2207e-01 1.0061e-01 2.7740e-02 6.7200e-03 1.4400e-03
- 2.8000e-04 5.0000e-05 1.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
- 2025-05-23 08:28:46,672 - tf_lstm.py - INFO - 验证集损失函数为:[5.1888e-01 1.6976e-01 4.9170e-02 1.2490e-02 2.8000e-03 5.6000e-04
- 1.0000e-04 2.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
- 2025-05-23 08:28:46,673 - tf_model_train.py - ERROR - Training failed: can only concatenate str (not "int") to str
- Traceback (most recent call last):
- File "E:\compete\app\model\tf_model_train.py", line 94, in train
- 'model_table': self.config['model_table'] + f'_{pre_type}_' + pre_id,
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~
- TypeError: can only concatenate str (not "int") to str
- - _handle_error
- 2025-05-23 08:35:44,723 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-23 08:35:44,847 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-23 08:35:47,468 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-23 08:35:50,450 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-23 08:35:50,453 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-23 08:35:50,668 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-23 08:35:50,670 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-23 08:35:50,686 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-23 08:35:50,689 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-23 08:35:50,694 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-23 08:35:50,696 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-23 08:35:50,723 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-23 08:35:50,723 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-23 08:35:50,723 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-23 08:35:50,723 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-23 08:35:50,724 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-23 08:35:50,724 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-23 08:35:51,687 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-23 08:35:51,689 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-23 08:35:51,695 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-23 08:35:51,696 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-23 08:36:06,600 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-23 08:36:06,600 - tf_lstm.py - INFO - 训练集损失函数为:[9.0568e-01 3.1741e-01 9.8600e-02 2.7150e-02 6.6200e-03 1.4700e-03
- 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-23 08:36:06,601 - tf_lstm.py - INFO - 验证集损失函数为:[0.50575 0.165 0.04822 0.01292 0.00361 0.00145 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-23 08:36:06,601 - tf_lstm.py - INFO - 验证集损失函数为:[5.1277e-01 1.6664e-01 4.8130e-02 1.2280e-02 2.8200e-03 6.3000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-23 08:36:06,647 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682fc2f63ef80176b2f4bf7e - insert_trained_model_into_mongo
- 2025-05-23 08:36:06,657 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682fc2f63ef80176b2f4bf80 - insert_scaler_model_into_mongo
- 2025-05-23 08:36:06,668 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682fc2f649c4c6cb3fd6c5b2 - insert_trained_model_into_mongo
- 2025-05-23 08:36:06,685 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682fc2f649c4c6cb3fd6c5b4 - insert_scaler_model_into_mongo
- 2025-05-23 08:36:08,118 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-23 08:36:08,137 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-23 08:36:08,145 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-23 08:36:08,172 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-23 08:36:08,172 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-23 08:36:08,173 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-23 08:36:09,113 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-23 08:36:09,114 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-23 08:36:22,336 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-23 08:36:22,337 - tf_lstm.py - INFO - 训练集损失函数为:[9.1068e-01 3.2140e-01 1.0044e-01 2.7720e-02 6.7200e-03 1.4400e-03
- 2.8000e-04 5.0000e-05 1.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
- 2025-05-23 08:36:22,337 - tf_lstm.py - INFO - 验证集损失函数为:[5.1778e-01 1.6943e-01 4.9120e-02 1.2490e-02 2.8000e-03 5.6000e-04
- 1.0000e-04 2.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
- 2025-05-23 08:36:22,426 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682fc3061866c0ded50f27e9 - insert_trained_model_into_mongo
- 2025-05-23 08:36:22,446 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682fc3061866c0ded50f27eb - insert_scaler_model_into_mongo
|