south-forecast.2025-05-22.0.log 169 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951
  1. 2025-05-22 11:00:08,282 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  2. - _tfmw_add_deprecation_warning
  3. 2025-05-22 11:00:08,613 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  4. 2025-05-22 11:00:11,212 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  5. - _tfmw_add_deprecation_warning
  6. 2025-05-22 11:00:14,107 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  7. - _tfmw_add_deprecation_warning
  8. 2025-05-22 11:00:14,110 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  9. - _tfmw_add_deprecation_warning
  10. 2025-05-22 11:00:14,392 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  11. 2025-05-22 11:00:14,401 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  12. 2025-05-22 11:00:14,415 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  13. 2025-05-22 11:00:14,419 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  14. 2025-05-22 11:00:14,423 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  15. 2025-05-22 11:00:14,427 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  16. 2025-05-22 11:00:14,463 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  17. 2025-05-22 11:00:14,463 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  18. 2025-05-22 11:00:14,463 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  19. 2025-05-22 11:00:14,463 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  20. 2025-05-22 11:00:14,464 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  21. 2025-05-22 11:00:14,464 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  22. 2025-05-22 11:00:15,484 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  23. 2025-05-22 11:00:15,484 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  24. 2025-05-22 11:00:15,485 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  25. 2025-05-22 11:00:15,485 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  26. 2025-05-22 11:00:28,458 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  27. 2025-05-22 11:00:28,458 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  28. 2025-05-22 11:00:28,458 - tf_lstm.py - INFO - 训练集损失函数为:[9.0069e-01 3.1528e-01 9.7720e-02 2.6780e-02 6.4900e-03 1.4300e-03
  29. 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  30. 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
  31. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  32. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  33. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  34. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  35. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  36. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  37. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  38. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  39. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  40. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  41. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  42. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  43. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  44. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  45. 2025-05-22 11:00:28,458 - tf_lstm.py - INFO - 训练集损失函数为:[9.0124e-01 3.1763e-01 9.9520e-02 2.7860e-02 7.1800e-03 1.9800e-03
  46. 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  47. 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  48. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  49. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  50. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  51. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  52. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  53. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  54. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  55. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  56. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  57. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  58. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04
  59. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  60. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  61. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  62. 2025-05-22 11:00:28,459 - tf_lstm.py - INFO - 验证集损失函数为:[5.0957e-01 1.6535e-01 4.7580e-02 1.2060e-02 2.7500e-03 6.1000e-04
  63. 1.7000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  64. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  65. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  66. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  67. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  68. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  69. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  70. 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  71. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  72. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  73. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  74. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  75. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  76. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  77. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  78. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  79. 2025-05-22 11:00:28,459 - tf_lstm.py - INFO - 验证集损失函数为:[0.51216 0.16791 0.0493 0.01325 0.00369 0.00147 0.00101 0.00092 0.0009
  80. 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
  81. 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
  82. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084
  83. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  84. 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  85. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  86. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082
  87. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  88. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  89. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  90. 0.00082] - training
  91. 2025-05-22 11:00:28,518 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682e934cf784a6b4a7b99c0b - insert_trained_model_into_mongo
  92. 2025-05-22 11:00:28,528 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682e934c6e3c6f67919b8a61 - insert_trained_model_into_mongo
  93. 2025-05-22 11:00:28,553 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682e934c6e3c6f67919b8a63 - insert_scaler_model_into_mongo
  94. 2025-05-22 11:00:28,559 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682e934cf784a6b4a7b99c0d - insert_scaler_model_into_mongo
  95. 2025-05-22 11:00:29,840 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
  96. 2025-05-22 11:07:40,679 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  97. - _tfmw_add_deprecation_warning
  98. 2025-05-22 11:07:44,165 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  99. 2025-05-22 11:08:09,067 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  100. - _tfmw_add_deprecation_warning
  101. 2025-05-22 11:13:00,030 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  102. - _tfmw_add_deprecation_warning
  103. 2025-05-22 11:13:00,144 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  104. 2025-05-22 11:13:02,718 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  105. - _tfmw_add_deprecation_warning
  106. 2025-05-22 11:13:05,631 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  107. - _tfmw_add_deprecation_warning
  108. 2025-05-22 11:13:05,632 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  109. - _tfmw_add_deprecation_warning
  110. 2025-05-22 11:13:05,855 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  111. 2025-05-22 11:13:05,855 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  112. 2025-05-22 11:13:05,873 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  113. 2025-05-22 11:13:05,873 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  114. 2025-05-22 11:13:05,881 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  115. 2025-05-22 11:13:05,881 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  116. 2025-05-22 11:13:05,909 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  117. 2025-05-22 11:13:05,909 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  118. 2025-05-22 11:13:05,909 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  119. 2025-05-22 11:13:05,909 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  120. 2025-05-22 11:13:05,909 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  121. 2025-05-22 11:13:05,910 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  122. 2025-05-22 11:13:06,849 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  123. 2025-05-22 11:13:06,850 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  124. 2025-05-22 11:13:06,872 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  125. 2025-05-22 11:13:06,872 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  126. 2025-05-22 11:13:19,649 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  127. 2025-05-22 11:13:19,649 - tf_lstm.py - INFO - 训练集损失函数为:[9.0405e-01 3.1641e-01 9.7950e-02 2.6820e-02 6.5000e-03 1.4300e-03
  128. 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  129. 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
  130. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  131. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  132. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  133. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  134. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  135. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  136. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  137. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  138. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  139. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  140. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  141. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  142. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  143. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  144. 2025-05-22 11:13:19,649 - tf_lstm.py - INFO - 验证集损失函数为:[5.1157e-01 1.6582e-01 4.7650e-02 1.2070e-02 2.7500e-03 6.1000e-04
  145. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  146. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  147. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  148. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  149. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  150. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  151. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  152. 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  153. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  154. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  155. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  156. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  157. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  158. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  159. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  160. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  161. 2025-05-22 11:13:19,659 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  162. 2025-05-22 11:13:19,660 - tf_lstm.py - INFO - 训练集损失函数为:[9.0396e-01 3.1831e-01 9.9550e-02 2.7800e-02 7.1400e-03 1.9600e-03
  163. 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  164. 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  165. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  166. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  167. 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  168. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  169. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  170. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  171. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  172. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  173. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  174. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  175. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04
  176. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  177. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  178. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  179. 2025-05-22 11:13:19,660 - tf_lstm.py - INFO - 验证集损失函数为:[0.51355 0.16811 0.04924 0.01319 0.00367 0.00146 0.00101 0.00092 0.0009
  180. 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
  181. 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
  182. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
  183. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  184. 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  185. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  186. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082
  187. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  188. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  189. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  190. 0.00082] - training
  191. 2025-05-22 11:13:19,705 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682e964ff0d6786d32a727ec - insert_trained_model_into_mongo
  192. 2025-05-22 11:13:19,709 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682e964f3e4b222ab549997c - insert_trained_model_into_mongo
  193. 2025-05-22 11:13:19,728 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682e964ff0d6786d32a727ee - insert_scaler_model_into_mongo
  194. 2025-05-22 11:13:19,733 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682e964f3e4b222ab549997e - insert_scaler_model_into_mongo
  195. 2025-05-22 11:13:21,022 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
  196. 2025-05-22 13:06:09,682 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  197. - _tfmw_add_deprecation_warning
  198. 2025-05-22 13:06:09,939 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  199. 2025-05-22 13:06:12,715 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  200. - _tfmw_add_deprecation_warning
  201. 2025-05-22 13:06:15,661 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  202. - _tfmw_add_deprecation_warning
  203. 2025-05-22 13:06:15,662 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  204. - _tfmw_add_deprecation_warning
  205. 2025-05-22 13:06:15,932 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  206. 2025-05-22 13:06:15,932 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  207. 2025-05-22 13:06:15,959 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  208. 2025-05-22 13:06:15,959 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  209. 2025-05-22 13:06:15,967 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  210. 2025-05-22 13:06:15,968 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  211. 2025-05-22 13:06:16,004 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  212. 2025-05-22 13:06:16,004 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  213. 2025-05-22 13:06:16,005 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  214. 2025-05-22 13:06:16,005 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  215. 2025-05-22 13:06:16,005 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  216. 2025-05-22 13:06:16,005 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  217. 2025-05-22 13:06:17,007 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  218. 2025-05-22 13:06:17,007 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  219. 2025-05-22 13:06:17,007 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  220. 2025-05-22 13:06:17,007 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  221. 2025-05-22 13:06:29,989 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  222. 2025-05-22 13:06:29,990 - tf_lstm.py - INFO - 训练集损失函数为:[9.0225e-01 3.1749e-01 9.9030e-02 2.7310e-02 6.6500e-03 1.4700e-03
  223. 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  224. 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  225. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  226. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  227. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  228. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  229. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  230. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  231. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  232. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  233. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  234. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  235. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  236. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  237. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  238. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  239. 2025-05-22 13:06:29,990 - tf_lstm.py - INFO - 验证集损失函数为:[0.50924 0.16612 0.04859 0.013 0.00362 0.00146 0.00101 0.00092 0.0009
  240. 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
  241. 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
  242. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
  243. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  244. 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  245. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  246. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082
  247. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  248. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  249. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  250. 0.00082] - training
  251. 2025-05-22 13:06:29,990 - tf_lstm.py - INFO - 验证集损失函数为:[5.1195e-01 1.6715e-01 4.8400e-02 1.2340e-02 2.8200e-03 6.2000e-04
  252. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  253. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  254. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  255. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  256. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  257. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  258. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  259. 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  260. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  261. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  262. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  263. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  264. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  265. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  266. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  267. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  268. 2025-05-22 13:06:30,043 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb0d6741733b69380e30e - insert_trained_model_into_mongo
  269. 2025-05-22 13:06:30,044 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb0d63e5e1c931e47042e - insert_trained_model_into_mongo
  270. 2025-05-22 13:06:30,052 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb0d6741733b69380e310 - insert_scaler_model_into_mongo
  271. 2025-05-22 13:06:30,052 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb0d63e5e1c931e470430 - insert_scaler_model_into_mongo
  272. 2025-05-22 13:06:31,384 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
  273. 2025-05-22 13:21:28,302 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  274. - _tfmw_add_deprecation_warning
  275. 2025-05-22 13:21:32,961 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  276. 2025-05-22 13:21:55,981 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  277. - _tfmw_add_deprecation_warning
  278. 2025-05-22 13:22:19,846 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  279. - _tfmw_add_deprecation_warning
  280. 2025-05-22 13:22:19,965 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  281. - _tfmw_add_deprecation_warning
  282. 2025-05-22 13:22:32,298 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  283. 2025-05-22 13:22:32,299 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  284. 2025-05-22 13:22:49,121 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  285. 2025-05-22 13:22:49,123 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  286. 2025-05-22 13:22:59,511 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  287. 2025-05-22 13:22:59,519 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  288. 2025-05-22 13:22:59,558 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  289. 2025-05-22 13:22:59,558 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  290. 2025-05-22 13:22:59,560 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  291. 2025-05-22 13:22:59,565 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  292. 2025-05-22 13:22:59,565 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  293. 2025-05-22 13:22:59,567 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  294. 2025-05-22 13:23:14,175 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  295. 2025-05-22 13:23:14,175 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  296. 2025-05-22 13:23:14,176 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  297. 2025-05-22 13:23:14,177 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  298. 2025-05-22 13:23:52,897 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  299. 2025-05-22 13:23:52,897 - tf_lstm.py - INFO - 训练集损失函数为:[9.0598e-01 3.1883e-01 9.9640e-02 2.7810e-02 7.1500e-03 1.9700e-03
  300. 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  301. 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  302. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  303. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  304. 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  305. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  306. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  307. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  308. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  309. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  310. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  311. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  312. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04
  313. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  314. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  315. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  316. 2025-05-22 13:23:52,898 - tf_lstm.py - INFO - 验证集损失函数为:[0.51461 0.16825 0.04928 0.0132 0.00367 0.00147 0.00101 0.00092 0.0009
  317. 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
  318. 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
  319. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
  320. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  321. 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  322. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  323. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082
  324. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  325. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  326. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  327. 0.00082] - training
  328. 2025-05-22 13:23:52,944 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  329. 2025-05-22 13:23:52,945 - tf_lstm.py - INFO - 训练集损失函数为:[9.0190e-01 3.1699e-01 9.8690e-02 2.7170e-02 6.6100e-03 1.4600e-03
  330. 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  331. 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
  332. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  333. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  334. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  335. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  336. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  337. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  338. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  339. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  340. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  341. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  342. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  343. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  344. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  345. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  346. 2025-05-22 13:23:52,945 - tf_lstm.py - INFO - 验证集损失函数为:[5.1143e-01 1.6671e-01 4.8180e-02 1.2270e-02 2.8100e-03 6.3000e-04
  347. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  348. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  349. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  350. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  351. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  352. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  353. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  354. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05
  355. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  356. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  357. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  358. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  359. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  360. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  361. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  362. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  363. 2025-05-22 13:23:58,957 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb4ee215b380c4e277f3d - insert_trained_model_into_mongo
  364. 2025-05-22 13:23:58,962 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb4eef0381e0011af450d - insert_trained_model_into_mongo
  365. 2025-05-22 13:23:58,970 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb4ee215b380c4e277f3f - insert_scaler_model_into_mongo
  366. 2025-05-22 13:23:58,987 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb4eef0381e0011af450f - insert_scaler_model_into_mongo
  367. 2025-05-22 13:25:06,867 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  368. - _tfmw_add_deprecation_warning
  369. 2025-05-22 13:25:10,017 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  370. 2025-05-22 13:25:33,151 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  371. - _tfmw_add_deprecation_warning
  372. 2025-05-22 13:25:56,908 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  373. - _tfmw_add_deprecation_warning
  374. 2025-05-22 13:25:56,915 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  375. - _tfmw_add_deprecation_warning
  376. 2025-05-22 13:31:51,198 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  377. - _tfmw_add_deprecation_warning
  378. 2025-05-22 13:31:51,314 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  379. 2025-05-22 13:31:53,876 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  380. - _tfmw_add_deprecation_warning
  381. 2025-05-22 13:31:56,769 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  382. - _tfmw_add_deprecation_warning
  383. 2025-05-22 13:31:56,769 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  384. - _tfmw_add_deprecation_warning
  385. 2025-05-22 13:31:56,973 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  386. 2025-05-22 13:31:56,974 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  387. 2025-05-22 13:31:56,992 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  388. 2025-05-22 13:31:56,993 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  389. 2025-05-22 13:31:57,000 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  390. 2025-05-22 13:31:57,001 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  391. 2025-05-22 13:31:57,027 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  392. 2025-05-22 13:31:57,027 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  393. 2025-05-22 13:31:57,028 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  394. 2025-05-22 13:31:57,028 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  395. 2025-05-22 13:31:57,029 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  396. 2025-05-22 13:31:57,029 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  397. 2025-05-22 13:31:57,948 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  398. 2025-05-22 13:31:57,949 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  399. 2025-05-22 13:31:57,957 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  400. 2025-05-22 13:31:57,958 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  401. 2025-05-22 13:32:10,777 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  402. 2025-05-22 13:32:10,778 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  403. 2025-05-22 13:32:10,778 - tf_lstm.py - INFO - 训练集损失函数为:[8.9570e-01 3.1407e-01 9.7760e-02 2.7200e-02 6.9900e-03 1.9300e-03
  404. 8.1000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  405. 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  406. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  407. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  408. 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  409. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  410. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  411. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  412. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  413. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  414. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  415. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  416. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  417. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  418. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  419. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  420. 2025-05-22 13:32:10,778 - tf_lstm.py - INFO - 训练集损失函数为:[9.0424e-01 3.1647e-01 9.8080e-02 2.6880e-02 6.5100e-03 1.4300e-03
  421. 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  422. 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
  423. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  424. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  425. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  426. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  427. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  428. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  429. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  430. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  431. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  432. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  433. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  434. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  435. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  436. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  437. 2025-05-22 13:32:10,778 - tf_lstm.py - INFO - 验证集损失函数为:[0.5076 0.16537 0.04823 0.01291 0.0036 0.00145 0.00101 0.00092 0.0009
  438. 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
  439. 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
  440. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
  441. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  442. 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
  443. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  444. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  445. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  446. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  447. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  448. 0.00082] - training
  449. 2025-05-22 13:32:10,778 - tf_lstm.py - INFO - 验证集损失函数为:[5.1157e-01 1.6595e-01 4.7750e-02 1.2100e-02 2.7500e-03 6.1000e-04
  450. 1.7000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  451. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  452. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  453. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  454. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  455. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  456. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  457. 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  458. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  459. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  460. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  461. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  462. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  463. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  464. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  465. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  466. 2025-05-22 13:32:10,816 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb6daed827ab3f0037eb2 - insert_trained_model_into_mongo
  467. 2025-05-22 13:32:10,816 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb6dad7c91141fbffba57 - insert_trained_model_into_mongo
  468. 2025-05-22 13:32:10,848 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb6dad7c91141fbffba59 - insert_scaler_model_into_mongo
  469. 2025-05-22 13:32:10,863 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb6daed827ab3f0037eb4 - insert_scaler_model_into_mongo
  470. 2025-05-22 13:32:12,164 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
  471. 2025-05-22 13:36:17,718 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  472. - _tfmw_add_deprecation_warning
  473. 2025-05-22 13:36:17,835 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  474. 2025-05-22 13:36:20,536 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  475. - _tfmw_add_deprecation_warning
  476. 2025-05-22 13:36:23,520 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  477. - _tfmw_add_deprecation_warning
  478. 2025-05-22 13:36:23,524 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  479. - _tfmw_add_deprecation_warning
  480. 2025-05-22 13:36:23,730 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  481. 2025-05-22 13:36:23,730 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  482. 2025-05-22 13:36:23,748 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  483. 2025-05-22 13:36:23,748 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  484. 2025-05-22 13:36:23,757 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  485. 2025-05-22 13:36:23,757 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  486. 2025-05-22 13:36:23,784 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  487. 2025-05-22 13:36:23,784 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  488. 2025-05-22 13:36:23,785 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  489. 2025-05-22 13:36:23,786 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  490. 2025-05-22 13:36:23,786 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  491. 2025-05-22 13:36:23,787 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  492. 2025-05-22 13:36:24,750 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  493. 2025-05-22 13:36:24,751 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  494. 2025-05-22 13:36:24,755 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  495. 2025-05-22 13:36:24,755 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  496. 2025-05-22 13:36:37,674 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  497. 2025-05-22 13:36:37,674 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  498. 2025-05-22 13:36:37,675 - tf_lstm.py - INFO - 训练集损失函数为:[9.0215e-01 3.1682e-01 9.8480e-02 2.7050e-02 6.5600e-03 1.4400e-03
  499. 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  500. 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  501. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  502. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  503. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  504. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  505. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  506. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  507. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  508. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  509. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  510. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  511. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  512. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  513. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  514. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  515. 2025-05-22 13:36:37,675 - tf_lstm.py - INFO - 验证集损失函数为:[0.51142 0.16709 0.04888 0.01311 0.00366 0.00147 0.00102 0.00093 0.00091
  516. 0.0009 0.0009 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087
  517. 0.00087 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086
  518. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085
  519. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  520. 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  521. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  522. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082 0.00082
  523. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  524. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  525. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  526. 0.00082] - training
  527. 2025-05-22 13:36:37,675 - tf_lstm.py - INFO - 验证集损失函数为:[5.1143e-01 1.6646e-01 4.8020e-02 1.2190e-02 2.7800e-03 6.2000e-04
  528. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  529. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  530. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  531. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  532. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  533. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  534. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  535. 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  536. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  537. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  538. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  539. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  540. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  541. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  542. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  543. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  544. 2025-05-22 13:36:37,713 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb7e5627b101c684d84af - insert_trained_model_into_mongo
  545. 2025-05-22 13:36:37,720 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb7e5627b101c684d84b1 - insert_scaler_model_into_mongo
  546. 2025-05-22 13:36:37,736 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb7e5c78eb332b44d57b5 - insert_trained_model_into_mongo
  547. 2025-05-22 13:36:37,757 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb7e5c78eb332b44d57b7 - insert_scaler_model_into_mongo
  548. 2025-05-22 13:36:39,035 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
  549. 2025-05-22 13:43:10,995 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  550. - _tfmw_add_deprecation_warning
  551. 2025-05-22 13:43:14,416 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  552. 2025-05-22 13:43:37,750 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  553. - _tfmw_add_deprecation_warning
  554. 2025-05-22 13:44:04,231 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  555. - _tfmw_add_deprecation_warning
  556. 2025-05-22 13:44:04,235 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  557. - _tfmw_add_deprecation_warning
  558. 2025-05-22 13:45:28,979 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  559. 2025-05-22 13:45:28,979 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  560. 2025-05-22 13:45:29,000 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  561. 2025-05-22 13:45:29,001 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  562. 2025-05-22 13:45:29,028 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  563. 2025-05-22 13:45:29,029 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  564. 2025-05-22 13:45:29,071 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  565. 2025-05-22 13:45:29,072 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  566. 2025-05-22 13:45:29,073 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  567. 2025-05-22 13:45:29,073 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  568. 2025-05-22 13:45:29,074 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  569. 2025-05-22 13:45:29,075 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  570. 2025-05-22 13:45:31,139 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  571. 2025-05-22 13:45:31,140 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  572. 2025-05-22 13:45:31,142 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  573. 2025-05-22 13:45:31,143 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  574. 2025-05-22 13:46:07,442 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  575. 2025-05-22 13:46:07,442 - tf_lstm.py - INFO - 训练集损失函数为:[8.9715e-01 3.1446e-01 9.7490e-02 2.6710e-02 6.4700e-03 1.4300e-03
  576. 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  577. 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
  578. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  579. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  580. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  581. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  582. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  583. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  584. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  585. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  586. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  587. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  588. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  589. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  590. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  591. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  592. 2025-05-22 13:46:07,443 - tf_lstm.py - INFO - 验证集损失函数为:[5.0805e-01 1.6497e-01 4.7450e-02 1.2030e-02 2.7400e-03 6.1000e-04
  593. 1.7000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  594. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  595. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  596. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  597. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  598. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  599. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  600. 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  601. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  602. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  603. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  604. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  605. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  606. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  607. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  608. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  609. 2025-05-22 13:46:07,584 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  610. 2025-05-22 13:46:07,584 - tf_lstm.py - INFO - 训练集损失函数为:[8.9563e-01 3.1477e-01 9.8380e-02 2.7490e-02 7.0800e-03 1.9500e-03
  611. 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  612. 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  613. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  614. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  615. 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  616. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  617. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  618. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  619. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  620. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  621. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  622. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  623. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  624. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  625. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  626. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  627. 2025-05-22 13:46:07,584 - tf_lstm.py - INFO - 验证集损失函数为:[0.50812 0.16611 0.04868 0.01307 0.00365 0.00146 0.00101 0.00092 0.0009
  628. 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
  629. 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
  630. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
  631. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  632. 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
  633. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  634. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  635. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  636. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  637. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  638. 0.00082] - training
  639. 2025-05-22 13:46:14,116 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eba26770d6ffe7e22a033 - insert_trained_model_into_mongo
  640. 2025-05-22 13:46:14,120 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eba26d439ed5d688f8e53 - insert_trained_model_into_mongo
  641. 2025-05-22 13:46:14,129 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eba26770d6ffe7e22a035 - insert_scaler_model_into_mongo
  642. 2025-05-22 13:46:14,166 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eba26d439ed5d688f8e55 - insert_scaler_model_into_mongo
  643. 2025-05-22 14:22:14,267 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  644. - _tfmw_add_deprecation_warning
  645. 2025-05-22 14:22:14,388 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  646. 2025-05-22 14:22:17,074 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  647. - _tfmw_add_deprecation_warning
  648. 2025-05-22 14:22:19,916 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  649. - _tfmw_add_deprecation_warning
  650. 2025-05-22 14:22:22,871 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  651. - _tfmw_add_deprecation_warning
  652. 2025-05-22 14:22:22,872 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  653. - _tfmw_add_deprecation_warning
  654. 2025-05-22 14:22:23,608 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
  655. 2025-05-22 14:26:54,980 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  656. - _tfmw_add_deprecation_warning
  657. 2025-05-22 14:26:55,106 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  658. 2025-05-22 14:26:57,683 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  659. - _tfmw_add_deprecation_warning
  660. 2025-05-22 14:27:00,530 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  661. - _tfmw_add_deprecation_warning
  662. 2025-05-22 14:27:03,427 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  663. - _tfmw_add_deprecation_warning
  664. 2025-05-22 14:27:03,432 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  665. - _tfmw_add_deprecation_warning
  666. 2025-05-22 14:27:04,177 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
  667. 2025-05-22 14:27:41,884 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  668. - _tfmw_add_deprecation_warning
  669. 2025-05-22 14:27:42,000 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  670. 2025-05-22 14:27:44,598 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  671. - _tfmw_add_deprecation_warning
  672. 2025-05-22 14:27:47,308 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  673. - _tfmw_add_deprecation_warning
  674. 2025-05-22 14:27:50,203 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  675. - _tfmw_add_deprecation_warning
  676. 2025-05-22 14:27:50,204 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  677. - _tfmw_add_deprecation_warning
  678. 2025-05-22 14:27:50,954 - task_worker.py - ERROR - Area 1002 failed: Can only merge Series or DataFrame objects, a <class 'multiprocessing.managers.DictProxy'> was passed - region_task
  679. 2025-05-22 15:56:08,387 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  680. - _tfmw_add_deprecation_warning
  681. 2025-05-22 15:56:08,656 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  682. 2025-05-22 15:56:11,294 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  683. - _tfmw_add_deprecation_warning
  684. 2025-05-22 15:56:14,276 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  685. - _tfmw_add_deprecation_warning
  686. 2025-05-22 15:56:14,282 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  687. - _tfmw_add_deprecation_warning
  688. 2025-05-22 15:56:14,515 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  689. 2025-05-22 15:56:14,534 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  690. 2025-05-22 15:56:14,537 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  691. 2025-05-22 15:56:14,546 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  692. 2025-05-22 15:56:14,553 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  693. 2025-05-22 15:56:14,561 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  694. 2025-05-22 15:56:14,583 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  695. 2025-05-22 15:56:14,583 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  696. 2025-05-22 15:56:14,584 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  697. 2025-05-22 15:56:14,588 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  698. 2025-05-22 15:56:14,588 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  699. 2025-05-22 15:56:14,589 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  700. 2025-05-22 15:56:15,565 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  701. 2025-05-22 15:56:15,566 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  702. 2025-05-22 15:56:15,566 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  703. 2025-05-22 15:56:15,566 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  704. 2025-05-22 15:56:28,464 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  705. 2025-05-22 15:56:28,464 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  706. 2025-05-22 15:56:28,465 - tf_lstm.py - INFO - 训练集损失函数为:[8.9989e-01 3.1527e-01 9.8050e-02 2.7280e-02 7.0200e-03 1.9400e-03
  707. 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  708. 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
  709. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  710. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  711. 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  712. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  713. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  714. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  715. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  716. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  717. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  718. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  719. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  720. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  721. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  722. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  723. 2025-05-22 15:56:28,465 - tf_lstm.py - INFO - 训练集损失函数为:[9.0568e-01 3.1746e-01 9.8530e-02 2.7070e-02 6.5900e-03 1.4600e-03
  724. 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  725. 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
  726. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  727. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  728. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  729. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  730. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  731. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  732. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  733. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  734. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  735. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  736. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  737. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  738. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  739. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  740. 2025-05-22 15:56:28,465 - tf_lstm.py - INFO - 验证集损失函数为:[0.50977 0.16589 0.04836 0.01296 0.00362 0.00146 0.00101 0.00092 0.0009
  741. 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
  742. 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
  743. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
  744. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  745. 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
  746. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  747. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  748. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  749. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  750. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  751. 0.00082] - training
  752. 2025-05-22 15:56:28,465 - tf_lstm.py - INFO - 验证集损失函数为:[5.1289e-01 1.6660e-01 4.8030e-02 1.2220e-02 2.8000e-03 6.2000e-04
  753. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  754. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  755. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  756. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  757. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  758. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  759. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  760. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05
  761. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  762. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  763. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  764. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  765. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  766. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  767. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  768. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  769. 2025-05-22 15:56:28,507 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ed8acd5726df85922d205 - insert_trained_model_into_mongo
  770. 2025-05-22 15:56:28,522 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ed8ac2e1adc5f49fe0f09 - insert_trained_model_into_mongo
  771. 2025-05-22 15:56:28,529 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ed8acd5726df85922d207 - insert_scaler_model_into_mongo
  772. 2025-05-22 15:56:28,543 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ed8ac2e1adc5f49fe0f0b - insert_scaler_model_into_mongo
  773. 2025-05-22 15:56:29,862 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
  774. 2025-05-22 15:57:07,940 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  775. - _tfmw_add_deprecation_warning
  776. 2025-05-22 15:57:08,055 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  777. 2025-05-22 15:57:10,632 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  778. - _tfmw_add_deprecation_warning
  779. 2025-05-22 15:57:13,508 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  780. - _tfmw_add_deprecation_warning
  781. 2025-05-22 15:57:13,518 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  782. - _tfmw_add_deprecation_warning
  783. 2025-05-22 15:57:13,711 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  784. 2025-05-22 15:57:13,718 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  785. 2025-05-22 15:57:13,729 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  786. 2025-05-22 15:57:13,736 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  787. 2025-05-22 15:57:13,737 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  788. 2025-05-22 15:57:13,744 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  789. 2025-05-22 15:57:13,770 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  790. 2025-05-22 15:57:13,770 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  791. 2025-05-22 15:57:13,770 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  792. 2025-05-22 15:57:13,776 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  793. 2025-05-22 15:57:13,776 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  794. 2025-05-22 15:57:13,777 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  795. 2025-05-22 15:57:14,694 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  796. 2025-05-22 15:57:14,694 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  797. 2025-05-22 15:57:14,712 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  798. 2025-05-22 15:57:14,713 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  799. 2025-05-22 15:57:27,628 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  800. 2025-05-22 15:57:27,628 - tf_lstm.py - INFO - 训练集损失函数为:[9.1627e-01 3.2273e-01 1.0049e-01 2.7670e-02 6.7300e-03 1.4900e-03
  801. 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  802. 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
  803. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  804. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  805. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  806. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  807. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  808. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  809. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  810. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  811. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  812. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  813. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  814. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  815. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  816. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  817. 2025-05-22 15:57:27,628 - tf_lstm.py - INFO - 验证集损失函数为:[5.2048e-01 1.6975e-01 4.9060e-02 1.2500e-02 2.8600e-03 6.3000e-04
  818. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  819. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  820. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  821. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  822. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  823. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  824. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  825. 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  826. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  827. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  828. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  829. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  830. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  831. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  832. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  833. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  834. 2025-05-22 15:57:27,654 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  835. 2025-05-22 15:57:27,655 - tf_lstm.py - INFO - 训练集损失函数为:[9.1329e-01 3.2208e-01 1.0066e-01 2.8050e-02 7.1900e-03 1.9700e-03
  836. 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  837. 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
  838. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  839. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  840. 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  841. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  842. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  843. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  844. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  845. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  846. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  847. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  848. 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  849. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  850. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  851. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  852. 2025-05-22 15:57:27,655 - tf_lstm.py - INFO - 验证集损失函数为:[0.51954 0.17006 0.04973 0.01329 0.00368 0.00147 0.00101 0.00092 0.0009
  853. 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
  854. 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
  855. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084
  856. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  857. 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  858. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  859. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082 0.00082
  860. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  861. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  862. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  863. 0.00082] - training
  864. 2025-05-22 15:57:27,670 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ed8e7d0ad45b5ef1ff99f - insert_trained_model_into_mongo
  865. 2025-05-22 15:57:27,693 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ed8e7952fc3d26b39b369 - insert_trained_model_into_mongo
  866. 2025-05-22 15:57:27,698 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ed8e7d0ad45b5ef1ff9a1 - insert_scaler_model_into_mongo
  867. 2025-05-22 15:57:27,700 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ed8e7952fc3d26b39b36b - insert_scaler_model_into_mongo
  868. 2025-05-22 15:57:28,989 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
  869. 2025-05-22 16:00:26,751 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  870. - _tfmw_add_deprecation_warning
  871. 2025-05-22 16:02:27,969 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  872. 2025-05-22 16:02:51,521 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  873. - _tfmw_add_deprecation_warning
  874. 2025-05-22 16:03:20,174 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  875. - _tfmw_add_deprecation_warning
  876. 2025-05-22 16:03:20,244 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  877. - _tfmw_add_deprecation_warning
  878. 2025-05-22 16:03:43,812 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  879. 2025-05-22 16:03:43,818 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  880. 2025-05-22 16:03:43,837 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  881. 2025-05-22 16:03:43,843 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  882. 2025-05-22 16:03:43,869 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  883. 2025-05-22 16:03:43,874 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  884. 2025-05-22 16:03:43,915 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  885. 2025-05-22 16:03:43,916 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  886. 2025-05-22 16:03:43,918 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  887. 2025-05-22 16:03:43,920 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  888. 2025-05-22 16:03:43,920 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  889. 2025-05-22 16:03:43,922 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  890. 2025-05-22 16:03:45,818 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  891. 2025-05-22 16:03:45,820 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  892. 2025-05-22 16:03:45,842 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  893. 2025-05-22 16:03:45,842 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  894. 2025-05-22 16:04:23,192 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  895. 2025-05-22 16:04:23,193 - tf_lstm.py - INFO - 训练集损失函数为:[9.0817e-01 3.2013e-01 1.0016e-01 2.7980e-02 7.1900e-03 1.9700e-03
  896. 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  897. 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  898. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  899. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  900. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  901. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  902. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  903. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  904. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  905. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  906. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  907. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  908. 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  909. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  910. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  911. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  912. 2025-05-22 16:04:23,192 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  913. 2025-05-22 16:04:23,193 - tf_lstm.py - INFO - 验证集损失函数为:[0.51636 0.16911 0.04957 0.01328 0.00369 0.00147 0.00101 0.00092 0.0009
  914. 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
  915. 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
  916. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084
  917. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  918. 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  919. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  920. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082
  921. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  922. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  923. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  924. 0.00082] - training
  925. 2025-05-22 16:04:23,193 - tf_lstm.py - INFO - 训练集损失函数为:[9.0438e-01 3.1823e-01 9.9190e-02 2.7320e-02 6.6400e-03 1.4700e-03
  926. 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  927. 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  928. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  929. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  930. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  931. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  932. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  933. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  934. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  935. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  936. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  937. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  938. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  939. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  940. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  941. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  942. 2025-05-22 16:04:23,193 - tf_lstm.py - INFO - 验证集损失函数为:[5.1324e-01 1.6746e-01 4.8450e-02 1.2330e-02 2.8200e-03 6.2000e-04
  943. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  944. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  945. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  946. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  947. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  948. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  949. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  950. 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  951. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  952. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  953. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  954. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  955. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  956. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  957. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  958. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  959. 2025-05-22 16:04:28,183 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eda8ce1472c691263abcd - insert_trained_model_into_mongo
  960. 2025-05-22 16:04:28,184 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eda8ca57967ec2470f538 - insert_trained_model_into_mongo
  961. 2025-05-22 16:04:28,234 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eda8ca57967ec2470f53a - insert_scaler_model_into_mongo
  962. 2025-05-22 16:04:28,235 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eda8ce1472c691263abcf - insert_scaler_model_into_mongo
  963. 2025-05-22 16:15:20,362 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  964. - _tfmw_add_deprecation_warning
  965. 2025-05-22 16:15:20,482 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  966. 2025-05-22 16:15:23,124 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  967. - _tfmw_add_deprecation_warning
  968. 2025-05-22 16:15:26,082 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  969. - _tfmw_add_deprecation_warning
  970. 2025-05-22 16:15:26,083 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  971. - _tfmw_add_deprecation_warning
  972. 2025-05-22 16:15:26,299 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  973. 2025-05-22 16:15:26,299 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  974. 2025-05-22 16:15:26,318 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  975. 2025-05-22 16:15:26,318 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  976. 2025-05-22 16:15:26,326 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  977. 2025-05-22 16:15:26,326 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  978. 2025-05-22 16:15:26,353 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  979. 2025-05-22 16:15:26,353 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  980. 2025-05-22 16:15:26,353 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  981. 2025-05-22 16:15:26,353 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  982. 2025-05-22 16:15:26,353 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  983. 2025-05-22 16:15:26,353 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  984. 2025-05-22 16:15:27,303 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  985. 2025-05-22 16:15:27,303 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  986. 2025-05-22 16:15:27,303 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  987. 2025-05-22 16:15:27,303 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  988. 2025-05-22 16:15:40,212 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  989. 2025-05-22 16:15:40,212 - tf_lstm.py - INFO - 训练集损失函数为:[9.0386e-01 3.1856e-01 9.9750e-02 2.7890e-02 7.1800e-03 1.9800e-03
  990. 8.3000e-04 6.0000e-04 5.5000e-04 5.5000e-04 5.4000e-04 5.4000e-04
  991. 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04
  992. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  993. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  994. 5.3000e-04 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  995. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  996. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  997. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  998. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  999. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1000. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1001. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1002. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1003. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1004. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1005. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  1006. 2025-05-22 16:15:40,212 - tf_lstm.py - INFO - 训练集损失函数为:[8.9587e-01 3.1399e-01 9.7500e-02 2.6790e-02 6.5000e-03 1.4400e-03
  1007. 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  1008. 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
  1009. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1010. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1011. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1012. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1013. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1014. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1015. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1016. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1017. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1018. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1019. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1020. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1021. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1022. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  1023. 2025-05-22 16:15:40,212 - tf_lstm.py - INFO - 验证集损失函数为:[0.51364 0.16831 0.04936 0.01325 0.0037 0.00148 0.00101 0.00092 0.0009
  1024. 0.0009 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087
  1025. 0.00087 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086
  1026. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085
  1027. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  1028. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083
  1029. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1030. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1031. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1032. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1033. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1034. 0.00082] - training
  1035. 2025-05-22 16:15:40,213 - tf_lstm.py - INFO - 验证集损失函数为:[5.0722e-01 1.6484e-01 4.7540e-02 1.2080e-02 2.7600e-03 6.1000e-04
  1036. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1037. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1038. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1039. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1040. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1041. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1042. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1043. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05
  1044. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1045. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1046. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1047. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1048. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1049. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1050. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1051. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  1052. 2025-05-22 16:15:40,256 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682edd2c58422a3c9f4e08aa - insert_trained_model_into_mongo
  1053. 2025-05-22 16:15:40,266 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682edd2c1c34fc32963f2881 - insert_trained_model_into_mongo
  1054. 2025-05-22 16:15:40,287 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682edd2c58422a3c9f4e08ac - insert_scaler_model_into_mongo
  1055. 2025-05-22 16:15:40,289 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682edd2c1c34fc32963f2883 - insert_scaler_model_into_mongo
  1056. 2025-05-22 16:15:41,578 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
  1057. 2025-05-22 16:18:18,375 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1058. - _tfmw_add_deprecation_warning
  1059. 2025-05-22 16:18:18,503 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  1060. 2025-05-22 16:18:21,225 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1061. - _tfmw_add_deprecation_warning
  1062. 2025-05-22 16:18:24,210 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1063. - _tfmw_add_deprecation_warning
  1064. 2025-05-22 16:18:24,216 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1065. - _tfmw_add_deprecation_warning
  1066. 2025-05-22 16:18:24,419 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  1067. 2025-05-22 16:18:24,420 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  1068. 2025-05-22 16:18:24,439 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1069. 2025-05-22 16:18:24,440 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1070. 2025-05-22 16:18:24,447 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  1071. 2025-05-22 16:18:24,448 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  1072. 2025-05-22 16:18:24,475 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1073. 2025-05-22 16:18:24,475 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1074. 2025-05-22 16:18:24,476 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1075. 2025-05-22 16:18:24,476 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1076. 2025-05-22 16:18:24,476 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1077. 2025-05-22 16:18:24,477 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1078. 2025-05-22 16:18:25,429 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1079. 2025-05-22 16:18:25,429 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1080. 2025-05-22 16:18:25,431 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1081. 2025-05-22 16:18:25,431 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1082. 2025-05-22 16:18:38,854 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1083. 2025-05-22 16:18:38,854 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1084. 2025-05-22 16:18:38,854 - tf_lstm.py - INFO - 训练集损失函数为:[8.9569e-01 3.1485e-01 9.8280e-02 2.7410e-02 7.0500e-03 1.9500e-03
  1085. 8.2000e-04 6.0000e-04 5.6000e-04 5.5000e-04 5.5000e-04 5.4000e-04
  1086. 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  1087. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1088. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1089. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04
  1090. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1091. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1092. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1093. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1094. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1095. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1096. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1097. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04
  1098. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1099. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1100. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  1101. 2025-05-22 16:18:38,855 - tf_lstm.py - INFO - 训练集损失函数为:[9.1019e-01 3.2047e-01 9.9880e-02 2.7530e-02 6.7100e-03 1.4800e-03
  1102. 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  1103. 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
  1104. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1105. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1106. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1107. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1108. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1109. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1110. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1111. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1112. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1113. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1114. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1115. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1116. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1117. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  1118. 2025-05-22 16:18:38,855 - tf_lstm.py - INFO - 验证集损失函数为:[0.50823 0.16598 0.0485 0.01302 0.00365 0.00147 0.00102 0.00093 0.00091
  1119. 0.0009 0.0009 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087
  1120. 0.00087 0.00087 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086
  1121. 0.00086 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085
  1122. 0.00085 0.00085 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  1123. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083
  1124. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1125. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1126. 0.00083 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1127. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1128. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1129. 0.00082] - training
  1130. 2025-05-22 16:18:38,855 - tf_lstm.py - INFO - 验证集损失函数为:[5.1680e-01 1.6865e-01 4.8800e-02 1.2440e-02 2.8500e-03 6.3000e-04
  1131. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1132. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1133. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1134. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1135. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1136. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1137. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1138. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05
  1139. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1140. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1141. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1142. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1143. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1144. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1145. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1146. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  1147. 2025-05-22 16:18:38,892 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eddde166c956a98e4cdb6 - insert_trained_model_into_mongo
  1148. 2025-05-22 16:18:38,903 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eddde9239166b91e13257 - insert_trained_model_into_mongo
  1149. 2025-05-22 16:18:38,910 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eddde9239166b91e13259 - insert_scaler_model_into_mongo
  1150. 2025-05-22 16:18:38,924 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eddde166c956a98e4cdb8 - insert_scaler_model_into_mongo
  1151. 2025-05-22 16:19:36,327 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1152. - _tfmw_add_deprecation_warning
  1153. 2025-05-22 16:19:36,452 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  1154. 2025-05-22 16:19:39,140 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1155. - _tfmw_add_deprecation_warning
  1156. 2025-05-22 16:19:42,056 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1157. - _tfmw_add_deprecation_warning
  1158. 2025-05-22 16:19:42,056 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1159. - _tfmw_add_deprecation_warning
  1160. 2025-05-22 16:19:42,261 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  1161. 2025-05-22 16:19:42,261 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  1162. 2025-05-22 16:19:42,279 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1163. 2025-05-22 16:19:42,279 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1164. 2025-05-22 16:19:42,287 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  1165. 2025-05-22 16:19:42,287 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  1166. 2025-05-22 16:19:42,316 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1167. 2025-05-22 16:19:42,316 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1168. 2025-05-22 16:19:42,317 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1169. 2025-05-22 16:19:42,317 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1170. 2025-05-22 16:19:42,317 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1171. 2025-05-22 16:19:42,317 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1172. 2025-05-22 16:19:43,248 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1173. 2025-05-22 16:19:43,249 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1174. 2025-05-22 16:19:43,261 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1175. 2025-05-22 16:19:43,261 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1176. 2025-05-22 16:19:56,132 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1177. 2025-05-22 16:19:56,132 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1178. 2025-05-22 16:19:56,133 - tf_lstm.py - INFO - 训练集损失函数为:[9.0371e-01 3.1890e-01 9.9980e-02 2.7980e-02 7.2000e-03 1.9800e-03
  1179. 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  1180. 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1181. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1182. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1183. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1184. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1185. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1186. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1187. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1188. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1189. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1190. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1191. 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1192. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1193. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1194. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  1195. 2025-05-22 16:19:56,133 - tf_lstm.py - INFO - 验证集损失函数为:[0.51401 0.16865 0.04951 0.01329 0.0037 0.00147 0.00101 0.00092 0.0009
  1196. 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
  1197. 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085 0.00085
  1198. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084 0.00084
  1199. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  1200. 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1201. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1202. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082 0.00082
  1203. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1204. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1205. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1206. 0.00082] - training
  1207. 2025-05-22 16:19:56,133 - tf_lstm.py - INFO - 验证集损失函数为:[5.1199e-01 1.6678e-01 4.8120e-02 1.2220e-02 2.7800e-03 6.2000e-04
  1208. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1209. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1210. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1211. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1212. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1213. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1214. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1215. 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1216. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1217. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1218. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1219. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1220. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1221. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1222. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1223. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  1224. 2025-05-22 16:19:56,191 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ede2c6f86cd09523a290d - insert_trained_model_into_mongo
  1225. 2025-05-22 16:19:56,191 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ede2c82774bd11b16d043 - insert_trained_model_into_mongo
  1226. 2025-05-22 16:19:56,209 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ede2c6f86cd09523a290f - insert_scaler_model_into_mongo
  1227. 2025-05-22 16:19:56,223 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ede2c82774bd11b16d045 - insert_scaler_model_into_mongo
  1228. 2025-05-22 16:19:57,513 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
  1229. 2025-05-22 16:23:41,614 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1230. - _tfmw_add_deprecation_warning
  1231. 2025-05-22 16:23:47,120 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  1232. 2025-05-22 16:24:10,592 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1233. - _tfmw_add_deprecation_warning
  1234. 2025-05-22 16:24:39,240 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1235. - _tfmw_add_deprecation_warning
  1236. 2025-05-22 16:24:39,242 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1237. - _tfmw_add_deprecation_warning
  1238. 2025-05-22 16:24:39,724 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  1239. 2025-05-22 16:24:39,726 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  1240. 2025-05-22 16:24:39,745 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1241. 2025-05-22 16:24:39,748 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1242. 2025-05-22 16:24:39,774 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  1243. 2025-05-22 16:24:39,776 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  1244. 2025-05-22 16:24:39,816 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1245. 2025-05-22 16:24:39,816 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1246. 2025-05-22 16:24:39,817 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1247. 2025-05-22 16:24:39,817 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1248. 2025-05-22 16:24:39,819 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1249. 2025-05-22 16:24:39,819 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1250. 2025-05-22 16:24:41,717 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1251. 2025-05-22 16:24:41,717 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1252. 2025-05-22 16:24:41,748 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1253. 2025-05-22 16:24:41,748 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1254. 2025-05-22 16:25:18,445 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1255. 2025-05-22 16:25:18,445 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1256. 2025-05-22 16:25:18,445 - tf_lstm.py - INFO - 训练集损失函数为:[9.0181e-01 3.1616e-01 9.7980e-02 2.6830e-02 6.4900e-03 1.4300e-03
  1257. 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  1258. 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
  1259. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1260. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1261. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1262. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1263. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1264. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1265. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1266. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1267. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1268. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1269. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1270. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1271. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1272. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  1273. 2025-05-22 16:25:18,445 - tf_lstm.py - INFO - 训练集损失函数为:[8.9533e-01 3.1324e-01 9.7340e-02 2.7070e-02 6.9500e-03 1.9200e-03
  1274. 8.1000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  1275. 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1276. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1277. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1278. 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1279. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1280. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1281. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1282. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1283. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1284. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1285. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1286. 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1287. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1288. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1289. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  1290. 2025-05-22 16:25:18,446 - tf_lstm.py - INFO - 验证集损失函数为:[5.1082e-01 1.6583e-01 4.7670e-02 1.2070e-02 2.7500e-03 6.1000e-04
  1291. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1292. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1293. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1294. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1295. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1296. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1297. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1298. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1299. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1300. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1301. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1302. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1303. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1304. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1305. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1306. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  1307. 2025-05-22 16:25:18,446 - tf_lstm.py - INFO - 验证集损失函数为:[0.50668 0.16475 0.04801 0.01285 0.00359 0.00145 0.00101 0.00092 0.0009
  1308. 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
  1309. 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
  1310. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
  1311. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  1312. 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
  1313. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1314. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082
  1315. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1316. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1317. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1318. 0.00082] - training
  1319. 2025-05-22 16:25:18,550 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682edf6e4f4d66c1538080fc - insert_trained_model_into_mongo
  1320. 2025-05-22 16:25:18,562 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682edf6e4f4d66c1538080fe - insert_scaler_model_into_mongo
  1321. 2025-05-22 16:25:18,564 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682edf6ee396be238e929ca2 - insert_trained_model_into_mongo
  1322. 2025-05-22 16:25:18,576 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682edf6ee396be238e929ca4 - insert_scaler_model_into_mongo
  1323. 2025-05-22 16:36:42,098 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1324. - _tfmw_add_deprecation_warning
  1325. 2025-05-22 16:37:06,300 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  1326. 2025-05-22 16:37:29,931 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1327. - _tfmw_add_deprecation_warning
  1328. 2025-05-22 16:37:56,059 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1329. - _tfmw_add_deprecation_warning
  1330. 2025-05-22 16:37:56,060 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1331. - _tfmw_add_deprecation_warning
  1332. 2025-05-22 16:37:56,556 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  1333. 2025-05-22 16:37:56,556 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  1334. 2025-05-22 16:37:56,578 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1335. 2025-05-22 16:37:56,578 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1336. 2025-05-22 16:37:56,606 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  1337. 2025-05-22 16:37:56,606 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  1338. 2025-05-22 16:37:56,647 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1339. 2025-05-22 16:37:56,647 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1340. 2025-05-22 16:37:56,647 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1341. 2025-05-22 16:37:56,649 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1342. 2025-05-22 16:37:56,649 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1343. 2025-05-22 16:37:58,554 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1344. 2025-05-22 16:37:58,554 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1345. 2025-05-22 16:37:58,580 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1346. 2025-05-22 16:37:58,580 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1347. 2025-05-22 16:38:35,605 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1348. 2025-05-22 16:38:35,605 - tf_lstm.py - INFO - 训练集损失函数为:[9.0578e-01 3.1937e-01 1.0006e-01 2.7970e-02 7.1800e-03 1.9700e-03
  1349. 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  1350. 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1351. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1352. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1353. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1354. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1355. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1356. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1357. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1358. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1359. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1360. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1361. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04
  1362. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1363. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1364. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  1365. 2025-05-22 16:38:35,606 - tf_lstm.py - INFO - 验证集损失函数为:[0.51488 0.16886 0.04954 0.01328 0.00368 0.00146 0.001 0.00092 0.0009
  1366. 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
  1367. 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
  1368. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084
  1369. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  1370. 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1371. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1372. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082
  1373. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1374. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1375. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1376. 0.00082] - training
  1377. 2025-05-22 16:38:35,635 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1378. 2025-05-22 16:38:35,635 - tf_lstm.py - INFO - 训练集损失函数为:[8.9900e-01 3.1653e-01 9.8870e-02 2.7350e-02 6.6900e-03 1.4900e-03
  1379. 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  1380. 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
  1381. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1382. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1383. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1384. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1385. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1386. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1387. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1388. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1389. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1390. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1391. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1392. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1393. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1394. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  1395. 2025-05-22 16:38:35,636 - tf_lstm.py - INFO - 验证集损失函数为:[5.1022e-01 1.6676e-01 4.8400e-02 1.2390e-02 2.8500e-03 6.4000e-04
  1396. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1397. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1398. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1399. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1400. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1401. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1402. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1403. 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1404. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1405. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1406. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1407. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1408. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1409. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1410. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1411. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  1412. 2025-05-22 16:38:35,708 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee28b27b5da75067d35a8 - insert_trained_model_into_mongo
  1413. 2025-05-22 16:38:35,719 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee28b7a38bab92a0a5a3a - insert_trained_model_into_mongo
  1414. 2025-05-22 16:38:35,731 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee28b7a38bab92a0a5a3c - insert_scaler_model_into_mongo
  1415. 2025-05-22 16:38:35,741 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee28b27b5da75067d35aa - insert_scaler_model_into_mongo
  1416. 2025-05-22 16:41:06,720 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1417. - _tfmw_add_deprecation_warning
  1418. 2025-05-22 16:41:06,848 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  1419. 2025-05-22 16:41:09,615 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1420. - _tfmw_add_deprecation_warning
  1421. 2025-05-22 16:41:36,827 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1422. - _tfmw_add_deprecation_warning
  1423. 2025-05-22 16:41:52,435 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  1424. 2025-05-22 16:42:15,970 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1425. - _tfmw_add_deprecation_warning
  1426. 2025-05-22 16:42:47,697 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1427. - _tfmw_add_deprecation_warning
  1428. 2025-05-22 16:42:47,703 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1429. - _tfmw_add_deprecation_warning
  1430. 2025-05-22 16:42:48,195 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  1431. 2025-05-22 16:42:48,200 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  1432. 2025-05-22 16:42:48,218 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1433. 2025-05-22 16:42:48,221 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1434. 2025-05-22 16:42:48,246 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  1435. 2025-05-22 16:42:48,249 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  1436. 2025-05-22 16:42:48,289 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1437. 2025-05-22 16:42:48,289 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1438. 2025-05-22 16:42:48,291 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1439. 2025-05-22 16:42:48,291 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1440. 2025-05-22 16:42:48,291 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1441. 2025-05-22 16:42:48,293 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1442. 2025-05-22 16:42:50,221 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1443. 2025-05-22 16:42:50,222 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1444. 2025-05-22 16:42:50,251 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1445. 2025-05-22 16:42:50,251 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1446. 2025-05-22 16:43:27,237 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1447. 2025-05-22 16:43:27,238 - tf_lstm.py - INFO - 训练集损失函数为:[8.9134e-01 3.1183e-01 9.6960e-02 2.7010e-02 6.9500e-03 1.9300e-03
  1448. 8.1000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  1449. 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
  1450. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1451. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1452. 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1453. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1454. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1455. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1456. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1457. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1458. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1459. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1460. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1461. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1462. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1463. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  1464. 2025-05-22 16:43:27,238 - tf_lstm.py - INFO - 验证集损失函数为:[0.50446 0.16402 0.04786 0.01284 0.0036 0.00145 0.00101 0.00092 0.0009
  1465. 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
  1466. 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
  1467. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
  1468. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  1469. 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
  1470. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1471. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1472. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1473. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1474. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1475. 0.00082] - training
  1476. 2025-05-22 16:43:27,314 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1477. 2025-05-22 16:43:27,314 - tf_lstm.py - INFO - 训练集损失函数为:[8.9997e-01 3.1582e-01 9.7960e-02 2.6850e-02 6.5100e-03 1.4400e-03
  1478. 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  1479. 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
  1480. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1481. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1482. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1483. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1484. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1485. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1486. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1487. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1488. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1489. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1490. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1491. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1492. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1493. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  1494. 2025-05-22 16:43:27,314 - tf_lstm.py - INFO - 验证集损失函数为:[5.1007e-01 1.6575e-01 4.7690e-02 1.2090e-02 2.7600e-03 6.1000e-04
  1495. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1496. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1497. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1498. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1499. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1500. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1501. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1502. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05
  1503. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1504. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1505. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1506. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1507. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1508. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1509. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1510. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  1511. 2025-05-22 16:43:27,336 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee3afa37ce5e300dffc58 - insert_trained_model_into_mongo
  1512. 2025-05-22 16:43:27,385 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee3afa37ce5e300dffc5a - insert_scaler_model_into_mongo
  1513. 2025-05-22 16:43:27,429 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee3afded77197474391d7 - insert_trained_model_into_mongo
  1514. 2025-05-22 16:43:27,441 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee3afded77197474391d9 - insert_scaler_model_into_mongo
  1515. 2025-05-22 16:45:43,854 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
  1516. 2025-05-22 16:46:18,805 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1517. - _tfmw_add_deprecation_warning
  1518. 2025-05-22 16:46:21,969 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  1519. 2025-05-22 16:46:46,365 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1520. - _tfmw_add_deprecation_warning
  1521. 2025-05-22 16:47:14,361 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1522. - _tfmw_add_deprecation_warning
  1523. 2025-05-22 16:47:14,373 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1524. - _tfmw_add_deprecation_warning
  1525. 2025-05-22 16:47:15,097 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  1526. 2025-05-22 16:47:15,100 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  1527. 2025-05-22 16:47:15,135 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1528. 2025-05-22 16:47:15,136 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1529. 2025-05-22 16:47:15,169 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  1530. 2025-05-22 16:47:15,173 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  1531. 2025-05-22 16:47:15,235 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1532. 2025-05-22 16:47:15,235 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1533. 2025-05-22 16:47:15,239 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1534. 2025-05-22 16:47:15,241 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1535. 2025-05-22 16:47:15,241 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1536. 2025-05-22 16:47:15,244 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1537. 2025-05-22 16:47:17,702 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1538. 2025-05-22 16:47:17,703 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1539. 2025-05-22 16:47:17,719 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1540. 2025-05-22 16:47:17,720 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1541. 2025-05-22 16:47:59,223 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1542. 2025-05-22 16:47:59,223 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1543. 2025-05-22 16:47:59,223 - tf_lstm.py - INFO - 训练集损失函数为:[9.0682e-01 3.1992e-01 1.0042e-01 2.8180e-02 7.2700e-03 2.0000e-03
  1544. 8.3000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  1545. 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1546. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1547. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.2000e-04
  1548. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1549. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1550. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1551. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1552. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1553. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1554. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1555. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1556. 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1557. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1558. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1559. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  1560. 2025-05-22 16:47:59,223 - tf_lstm.py - INFO - 训练集损失函数为:[9.0271e-01 3.1676e-01 9.8510e-02 2.7120e-02 6.6000e-03 1.4600e-03
  1561. 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  1562. 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
  1563. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1564. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1565. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1566. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1567. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1568. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1569. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1570. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1571. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1572. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1573. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1574. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1575. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1576. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  1577. 2025-05-22 16:47:59,224 - tf_lstm.py - INFO - 验证集损失函数为:[0.51566 0.1692 0.04981 0.0134 0.00373 0.00148 0.00101 0.00092 0.0009
  1578. 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
  1579. 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085 0.00085
  1580. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084 0.00084
  1581. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  1582. 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1583. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1584. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082 0.00082 0.00082
  1585. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1586. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1587. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1588. 0.00082] - training
  1589. 2025-05-22 16:47:59,224 - tf_lstm.py - INFO - 验证集损失函数为:[5.1142e-01 1.6643e-01 4.8090e-02 1.2250e-02 2.8000e-03 6.2000e-04
  1590. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1591. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1592. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1593. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1594. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1595. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1596. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1597. 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1598. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1599. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1600. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1601. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1602. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1603. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1604. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1605. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  1606. 2025-05-22 16:47:59,336 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee4bf35eeabaeac48dbca - insert_trained_model_into_mongo
  1607. 2025-05-22 16:47:59,349 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee4bf35eeabaeac48dbcc - insert_scaler_model_into_mongo
  1608. 2025-05-22 16:47:59,372 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee4bf9324837aabe55d44 - insert_scaler_model_into_mongo
  1609. 2025-05-22 16:51:53,965 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1610. - _tfmw_add_deprecation_warning
  1611. 2025-05-22 16:51:54,086 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  1612. 2025-05-22 16:51:56,677 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1613. - _tfmw_add_deprecation_warning
  1614. 2025-05-22 16:51:59,595 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1615. - _tfmw_add_deprecation_warning
  1616. 2025-05-22 16:51:59,599 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1617. - _tfmw_add_deprecation_warning
  1618. 2025-05-22 16:51:59,803 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  1619. 2025-05-22 16:51:59,821 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1620. 2025-05-22 16:51:59,829 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  1621. 2025-05-22 16:51:59,829 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  1622. 2025-05-22 16:51:59,857 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1623. 2025-05-22 16:51:59,857 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1624. 2025-05-22 16:51:59,858 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1625. 2025-05-22 16:51:59,858 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1626. 2025-05-22 16:51:59,858 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1627. 2025-05-22 16:51:59,859 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1628. 2025-05-22 16:52:00,807 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1629. 2025-05-22 16:52:00,807 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1630. 2025-05-22 16:52:00,816 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1631. 2025-05-22 16:52:00,816 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1632. 2025-05-22 16:52:13,882 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1633. 2025-05-22 16:52:13,883 - tf_lstm.py - INFO - 训练集损失函数为:[9.0366e-01 3.1743e-01 9.8920e-02 2.7540e-02 7.0700e-03 1.9500e-03
  1634. 8.2000e-04 6.0000e-04 5.5000e-04 5.5000e-04 5.4000e-04 5.4000e-04
  1635. 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
  1636. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1637. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1638. 5.3000e-04 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1639. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1640. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1641. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1642. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1643. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1644. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1645. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1646. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1647. 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1648. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1649. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  1650. 2025-05-22 16:52:13,883 - tf_lstm.py - INFO - 验证集损失函数为:[0.51271 0.16722 0.0488 0.01307 0.00364 0.00146 0.00101 0.00092 0.0009
  1651. 0.0009 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087
  1652. 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086
  1653. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085
  1654. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  1655. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083
  1656. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1657. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1658. 0.00083 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1659. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1660. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1661. 0.00082] - training
  1662. 2025-05-22 16:52:13,924 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee5bde140b01fd24f34ff - insert_trained_model_into_mongo
  1663. 2025-05-22 16:52:13,932 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee5bde140b01fd24f3501 - insert_scaler_model_into_mongo
  1664. 2025-05-22 16:52:13,956 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1665. 2025-05-22 16:52:13,957 - tf_lstm.py - INFO - 训练集损失函数为:[8.9291e-01 3.1420e-01 9.8070e-02 2.7090e-02 6.6100e-03 1.4600e-03
  1666. 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  1667. 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1668. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1669. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1670. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1671. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1672. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1673. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1674. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1675. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1676. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1677. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1678. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1679. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1680. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1681. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  1682. 2025-05-22 16:52:13,957 - tf_lstm.py - INFO - 验证集损失函数为:[5.0656e-01 1.6547e-01 4.7970e-02 1.2260e-02 2.8100e-03 6.3000e-04
  1683. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1684. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1685. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1686. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1687. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1688. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1689. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1690. 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1691. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1692. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1693. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1694. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1695. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1696. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1697. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1698. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  1699. 2025-05-22 16:52:13,993 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee5bdd1747a06d97e0ef3 - insert_trained_model_into_mongo
  1700. 2025-05-22 16:52:14,030 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee5bed1747a06d97e0ef5 - insert_scaler_model_into_mongo
  1701. 2025-05-22 16:52:15,315 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
  1702. 2025-05-22 16:54:08,472 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1703. - _tfmw_add_deprecation_warning
  1704. 2025-05-22 16:54:12,196 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  1705. 2025-05-22 16:54:36,162 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1706. - _tfmw_add_deprecation_warning
  1707. 2025-05-22 16:55:09,151 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1708. - _tfmw_add_deprecation_warning
  1709. 2025-05-22 16:55:09,153 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1710. - _tfmw_add_deprecation_warning
  1711. 2025-05-22 16:55:09,901 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  1712. 2025-05-22 16:55:09,941 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1713. 2025-05-22 16:55:09,941 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1714. 2025-05-22 16:55:09,977 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  1715. 2025-05-22 16:55:10,026 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1716. 2025-05-22 16:55:10,027 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1717. 2025-05-22 16:55:10,027 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1718. 2025-05-22 16:55:10,027 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1719. 2025-05-22 16:55:10,029 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1720. 2025-05-22 16:55:10,029 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1721. 2025-05-22 16:55:12,772 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1722. 2025-05-22 16:55:12,773 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1723. 2025-05-22 16:55:12,785 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1724. 2025-05-22 16:55:12,785 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1725. 2025-05-22 16:56:01,718 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1726. 2025-05-22 16:56:01,720 - tf_lstm.py - INFO - 训练集损失函数为:[9.0185e-01 3.1664e-01 9.8400e-02 2.7020e-02 6.5600e-03 1.4500e-03
  1727. 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  1728. 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1729. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1730. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1731. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1732. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1733. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1734. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1735. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1736. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1737. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1738. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1739. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1740. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1741. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1742. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  1743. 2025-05-22 16:56:01,720 - tf_lstm.py - INFO - 训练集损失函数为:[9.0446e-01 3.1836e-01 9.9350e-02 2.7650e-02 7.0800e-03 1.9400e-03
  1744. 8.1000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  1745. 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1746. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1747. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1748. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1749. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1750. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1751. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1752. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1753. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1754. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1755. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1756. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04
  1757. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1758. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1759. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  1760. 2025-05-22 16:56:01,720 - tf_lstm.py - INFO - 验证集损失函数为:[5.1114e-01 1.6636e-01 4.7960e-02 1.2180e-02 2.7800e-03 6.2000e-04
  1761. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1762. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1763. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1764. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1765. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1766. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1767. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05
  1768. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1769. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1770. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1771. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1772. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1773. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1774. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1775. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1776. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  1777. 2025-05-22 16:56:01,720 - tf_lstm.py - INFO - 验证集损失函数为:[0.51384 0.16792 0.04904 0.0131 0.00363 0.00145 0.001 0.00092 0.0009
  1778. 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
  1779. 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
  1780. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084
  1781. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  1782. 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1783. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1784. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082
  1785. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1786. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1787. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1788. 0.00082] - training
  1789. 2025-05-22 16:56:01,831 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee6a10749b0ee0fe21ed9 - insert_trained_model_into_mongo
  1790. 2025-05-22 16:56:01,843 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee6a10749b0ee0fe21edb - insert_scaler_model_into_mongo
  1791. 2025-05-22 16:56:01,864 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee6a13f317b0620e79546 - insert_trained_model_into_mongo
  1792. 2025-05-22 16:56:01,899 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee6a13f317b0620e79548 - insert_scaler_model_into_mongo
  1793. 2025-05-22 18:30:17,846 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1794. - _tfmw_add_deprecation_warning
  1795. 2025-05-22 18:30:17,971 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  1796. 2025-05-22 18:30:20,914 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1797. - _tfmw_add_deprecation_warning
  1798. 2025-05-22 18:30:24,052 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1799. - _tfmw_add_deprecation_warning
  1800. 2025-05-22 18:30:24,054 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1801. - _tfmw_add_deprecation_warning
  1802. 2025-05-22 18:30:24,282 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  1803. 2025-05-22 18:30:24,299 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1804. 2025-05-22 18:30:24,300 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1805. 2025-05-22 18:30:24,308 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  1806. 2025-05-22 18:30:24,308 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  1807. 2025-05-22 18:30:24,335 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1808. 2025-05-22 18:30:24,335 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1809. 2025-05-22 18:30:24,335 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1810. 2025-05-22 18:30:24,335 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1811. 2025-05-22 18:30:24,336 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1812. 2025-05-22 18:30:24,336 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1813. 2025-05-22 18:30:25,304 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1814. 2025-05-22 18:30:25,304 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1815. 2025-05-22 18:30:25,304 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1816. 2025-05-22 18:30:25,305 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1817. 2025-05-22 18:30:39,377 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1818. 2025-05-22 18:30:39,377 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1819. 2025-05-22 18:30:39,377 - tf_lstm.py - INFO - 训练集损失函数为:[9.0965e-01 3.2084e-01 1.0057e-01 2.8150e-02 7.2500e-03 1.9900e-03
  1820. 8.3000e-04 6.0000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  1821. 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
  1822. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1823. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1824. 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1825. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1826. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1827. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1828. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1829. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1830. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1831. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1832. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04
  1833. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1834. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1835. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  1836. 2025-05-22 18:30:39,377 - tf_lstm.py - INFO - 训练集损失函数为:[9.0351e-01 3.1783e-01 9.9160e-02 2.7360e-02 6.6700e-03 1.4700e-03
  1837. 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  1838. 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  1839. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1840. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1841. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1842. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1843. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1844. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1845. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1846. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1847. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1848. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1849. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1850. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1851. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  1852. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  1853. 2025-05-22 18:30:39,378 - tf_lstm.py - INFO - 验证集损失函数为:[0.51728 0.16966 0.04982 0.01337 0.00372 0.00148 0.00101 0.00092 0.0009
  1854. 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
  1855. 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
  1856. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
  1857. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  1858. 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1859. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  1860. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082
  1861. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1862. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1863. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  1864. 0.00082] - training
  1865. 2025-05-22 18:30:39,378 - tf_lstm.py - INFO - 验证集损失函数为:[5.1250e-01 1.6734e-01 4.8480e-02 1.2370e-02 2.8300e-03 6.3000e-04
  1866. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1867. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1868. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1869. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1870. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1871. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1872. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1873. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05
  1874. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1875. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1876. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1877. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1878. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1879. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1880. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1881. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  1882. 2025-05-22 18:30:39,422 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682efccfd9cdd24a561b9430 - insert_trained_model_into_mongo
  1883. 2025-05-22 18:30:39,444 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682efccf11d24a1b0567e1cd - insert_trained_model_into_mongo
  1884. 2025-05-22 18:30:39,447 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682efccfd9cdd24a561b9432 - insert_scaler_model_into_mongo
  1885. 2025-05-22 18:30:39,452 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682efccf11d24a1b0567e1cf - insert_scaler_model_into_mongo
  1886. 2025-05-22 18:35:43,479 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1887. - _tfmw_add_deprecation_warning
  1888. 2025-05-22 18:35:43,599 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  1889. 2025-05-22 18:35:46,348 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1890. - _tfmw_add_deprecation_warning
  1891. 2025-05-22 18:35:49,304 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1892. - _tfmw_add_deprecation_warning
  1893. 2025-05-22 18:35:49,313 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  1894. - _tfmw_add_deprecation_warning
  1895. 2025-05-22 18:35:49,509 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  1896. 2025-05-22 18:35:49,518 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  1897. 2025-05-22 18:35:49,527 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1898. 2025-05-22 18:35:49,535 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  1899. 2025-05-22 18:35:49,536 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  1900. 2025-05-22 18:35:49,545 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  1901. 2025-05-22 18:35:49,563 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1902. 2025-05-22 18:35:49,563 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1903. 2025-05-22 18:35:49,564 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1904. 2025-05-22 18:35:49,572 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  1905. 2025-05-22 18:35:49,572 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  1906. 2025-05-22 18:35:49,573 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  1907. 2025-05-22 18:35:50,543 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1908. 2025-05-22 18:35:50,543 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  1909. 2025-05-22 18:35:50,543 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1910. 2025-05-22 18:35:50,543 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  1911. 2025-05-22 18:36:05,459 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1912. 2025-05-22 18:36:05,459 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  1913. 2025-05-22 18:36:05,460 - tf_lstm.py - INFO - 训练集损失函数为:[9.0471e-01 3.1927e-01 1.0005e-01 2.7970e-02 7.1900e-03 1.9800e-03
  1914. 8.3000e-04 6.0000e-04 5.5000e-04 5.5000e-04 5.4000e-04 5.4000e-04
  1915. 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
  1916. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1917. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  1918. 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1919. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1920. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1921. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1922. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1923. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1924. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1925. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  1926. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04
  1927. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1928. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  1929. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  1930. 2025-05-22 18:36:05,460 - tf_lstm.py - INFO - 验证集损失函数为:[5.1764e-01 1.6935e-01 4.9040e-02 1.2470e-02 2.8400e-03 6.3000e-04
  1931. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1932. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1933. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1934. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1935. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1936. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1937. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1938. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  1939. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1940. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1941. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1942. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1943. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1944. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1945. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  1946. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  1947. 2025-05-22 18:36:05,514 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682efe15d416e8f832fd0f55 - insert_trained_model_into_mongo
  1948. 2025-05-22 18:36:05,514 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682efe155dc17e5973916862 - insert_trained_model_into_mongo
  1949. 2025-05-22 18:36:05,546 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682efe155dc17e5973916864 - insert_scaler_model_into_mongo
  1950. 2025-05-22 18:36:05,561 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682efe15d416e8f832fd0f57 - insert_scaler_model_into_mongo
  1951. 2025-05-22 18:36:06,898 - task_worker.py - ERROR - Area 1002 failed: 'types.SimpleNamespace' object has no attribute 'cap' - region_task