south-forecast.2025-04-07.0.log 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. 2025-04-07 13:49:37,112 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  2. - _tfmw_add_deprecation_warning
  3. 2025-04-07 13:49:37,470 - tf_fmi_train.py - INFO - Program starts execution! - model_training
  4. 2025-04-07 13:49:37,529 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  5. 2025-04-07 13:49:37,544 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning
  6. 2025-04-07 13:49:37,566 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
  7. 2025-04-07 13:49:37,603 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
  8. 2025-04-07 13:49:37,604 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
  9. 2025-04-07 13:49:37,636 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
  10. 2025-04-07 13:49:37,636 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  11. 2025-04-07 13:49:37,637 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  12. 2025-04-07 13:49:37,639 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
  13. 2025-04-07 13:49:37,639 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  14. 2025-04-07 13:49:37,639 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  15. 2025-04-07 13:49:37,642 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
  16. 2025-04-07 13:49:37,643 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
  17. 2025-04-07 13:49:37,648 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
  18. 2025-04-07 13:49:37,648 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  19. 2025-04-07 13:49:37,649 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
  20. 2025-04-07 13:49:37,650 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  21. 2025-04-07 13:49:37,650 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
  22. 2025-04-07 13:49:37,651 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  23. 2025-04-07 13:49:37,652 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
  24. 2025-04-07 13:49:37,652 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  25. 2025-04-07 13:49:37,653 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
  26. 2025-04-07 13:49:37,653 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  27. 2025-04-07 13:49:37,654 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
  28. 2025-04-07 13:49:37,654 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  29. 2025-04-07 13:49:37,654 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
  30. 2025-04-07 13:49:37,655 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
  31. 2025-04-07 13:49:37,655 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
  32. 2025-04-07 13:49:37,668 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
  33. 2025-04-07 13:49:37,668 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
  34. 2025-04-07 13:49:37,670 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
  35. 2025-04-07 13:49:37,670 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
  36. 2025-04-07 13:49:37,671 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
  37. 2025-04-07 13:49:37,671 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  38. 2025-04-07 13:49:37,672 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
  39. 2025-04-07 13:49:37,673 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  40. 2025-04-07 13:49:37,673 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
  41. 2025-04-07 13:49:37,674 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  42. 2025-04-07 13:49:37,674 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
  43. 2025-04-07 13:49:37,674 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  44. 2025-04-07 13:49:37,675 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
  45. 2025-04-07 13:49:37,675 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
  46. 2025-04-07 13:49:37,676 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
  47. 2025-04-07 13:49:37,689 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
  48. 2025-04-07 13:49:37,696 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
  49. 2025-04-07 13:49:37,697 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
  50. 2025-04-07 13:49:37,698 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  51. 2025-04-07 13:49:37,699 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  52. 2025-04-07 13:49:37,700 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  53. 2025-04-07 13:49:37,701 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  54. 2025-04-07 13:49:37,702 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  55. 2025-04-07 13:49:37,704 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
  56. 2025-04-07 13:49:37,705 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
  57. 2025-04-07 13:49:37,707 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
  58. 2025-04-07 13:49:37,708 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  59. 2025-04-07 13:49:37,708 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  60. 2025-04-07 13:49:37,710 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  61. 2025-04-07 13:49:37,711 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
  62. 2025-04-07 13:49:37,711 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
  63. 2025-04-07 13:49:40,227 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  64. 2025-04-07 13:49:40,227 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  65. 2025-04-07 13:49:40,227 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  66. 2025-04-07 13:49:40,228 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  67. 2025-04-07 13:49:40,228 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  68. 2025-04-07 13:49:40,228 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  69. 2025-04-07 13:49:40,228 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  70. 2025-04-07 13:49:40,228 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  71. 2025-04-07 13:49:40,596 - dbmg.py - INFO - ❌ 系统异常: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - get_keras_model_from_mongo
  72. 2025-04-07 13:49:40,596 - tf_fmi.py - INFO - 加强训练加载模型权重失败:("Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}",) - train_init
  73. 2025-04-07 13:49:52,160 - tf_fmi.py - INFO - -----模型训练经过26轮迭代----- - training
  74. 2025-04-07 13:49:52,161 - tf_fmi.py - INFO - 训练集损失函数为:[51.50243 28.06182 16.38248 10.17221 6.57951 4.203 2.61306 1.60485
  75. 1.00219 0.66421 0.4868 0.39559 0.35092 0.33071 0.3226 0.31509
  76. 0.31194 0.31384 0.317 0.30989 0.30833 0.31057 0.30849 0.30717
  77. 0.30716 0.31247] - training
  78. 2025-04-07 13:49:52,161 - tf_fmi.py - INFO - 验证集损失函数为:[31.6882 20.1309 12.39297 8.02596 5.24482 3.35177 2.13436 1.35984
  79. 0.88974 0.62046 0.48093 0.41653 0.37632 0.35305 0.34172 0.3387
  80. 0.34334 0.34849 0.35522 0.352 0.34934 0.36202 0.36299 0.37276
  81. 0.37557 0.37552] - training
  82. 2025-04-07 13:49:52,237 - dbmg.py - INFO - ❌ 数据库操作 - 详细错误: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - insert_trained_model_into_mongo
  83. 2025-04-07 13:49:52,291 - tf_fmi_train.py - INFO - fmi训练任务:用了 14.820847511291504 秒 - model_training
  84. 2025-04-07 13:51:33,865 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  85. - _tfmw_add_deprecation_warning
  86. 2025-04-07 13:51:33,984 - tf_lstm_train.py - INFO - Program starts execution! - model_training
  87. 2025-04-07 13:51:34,039 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  88. 2025-04-07 13:51:34,049 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubDireciton', 'HubSpeed'} - data_column_cleaning
  89. 2025-04-07 13:51:34,063 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
  90. 2025-04-07 13:51:34,074 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
  91. 2025-04-07 13:51:34,075 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
  92. 2025-04-07 13:51:34,107 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
  93. 2025-04-07 13:51:34,107 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  94. 2025-04-07 13:51:34,108 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  95. 2025-04-07 13:51:34,109 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
  96. 2025-04-07 13:51:34,109 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  97. 2025-04-07 13:51:34,109 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  98. 2025-04-07 13:51:34,113 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
  99. 2025-04-07 13:51:34,113 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
  100. 2025-04-07 13:51:34,118 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
  101. 2025-04-07 13:51:34,118 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  102. 2025-04-07 13:51:34,119 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
  103. 2025-04-07 13:51:34,120 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  104. 2025-04-07 13:51:34,120 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
  105. 2025-04-07 13:51:34,121 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  106. 2025-04-07 13:51:34,122 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
  107. 2025-04-07 13:51:34,122 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  108. 2025-04-07 13:51:34,123 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
  109. 2025-04-07 13:51:34,123 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  110. 2025-04-07 13:51:34,124 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
  111. 2025-04-07 13:51:34,124 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  112. 2025-04-07 13:51:34,125 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
  113. 2025-04-07 13:51:34,125 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
  114. 2025-04-07 13:51:34,125 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
  115. 2025-04-07 13:51:34,138 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
  116. 2025-04-07 13:51:34,138 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
  117. 2025-04-07 13:51:34,140 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
  118. 2025-04-07 13:51:34,140 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
  119. 2025-04-07 13:51:34,141 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
  120. 2025-04-07 13:51:34,141 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  121. 2025-04-07 13:51:34,142 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
  122. 2025-04-07 13:51:34,142 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  123. 2025-04-07 13:51:34,143 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
  124. 2025-04-07 13:51:34,143 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  125. 2025-04-07 13:51:34,144 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
  126. 2025-04-07 13:51:34,144 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  127. 2025-04-07 13:51:34,144 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
  128. 2025-04-07 13:51:34,144 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
  129. 2025-04-07 13:51:34,145 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
  130. 2025-04-07 13:51:34,147 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
  131. 2025-04-07 13:51:34,150 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
  132. 2025-04-07 13:51:34,152 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
  133. 2025-04-07 13:51:34,153 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  134. 2025-04-07 13:51:34,154 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  135. 2025-04-07 13:51:34,155 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  136. 2025-04-07 13:51:34,156 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  137. 2025-04-07 13:51:34,157 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  138. 2025-04-07 13:51:34,159 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
  139. 2025-04-07 13:51:34,160 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
  140. 2025-04-07 13:51:34,162 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
  141. 2025-04-07 13:51:34,163 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  142. 2025-04-07 13:51:34,164 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  143. 2025-04-07 13:51:34,165 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  144. 2025-04-07 13:51:34,166 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
  145. 2025-04-07 13:51:34,166 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
  146. 2025-04-07 13:51:36,672 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  147. 2025-04-07 13:51:36,673 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  148. 2025-04-07 13:51:36,673 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  149. 2025-04-07 13:51:36,673 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  150. 2025-04-07 13:51:36,673 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  151. 2025-04-07 13:51:36,673 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  152. 2025-04-07 13:51:36,673 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  153. 2025-04-07 13:51:36,673 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  154. 2025-04-07 13:51:36,889 - dbmg.py - INFO - ❌ 系统异常: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - get_keras_model_from_mongo
  155. 2025-04-07 13:51:36,889 - tf_lstm.py - INFO - 加强训练加载模型权重失败:("Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}",) - train_init
  156. 2025-04-07 13:51:45,083 - tf_lstm.py - INFO - -----模型训练经过27轮迭代----- - training
  157. 2025-04-07 13:51:45,083 - tf_lstm.py - INFO - 训练集损失函数为:[0.98759 0.49017 0.39408 0.34942 0.32057 0.30133 0.28753 0.27798 0.2714
  158. 0.26692 0.26468 0.26134 0.25836 0.25676 0.25471 0.25288 0.25181 0.24975
  159. 0.24782 0.24746 0.247 0.24641 0.24581 0.24394 0.24685 0.24457 0.24353] - training
  160. 2025-04-07 13:51:45,083 - tf_lstm.py - INFO - 验证集损失函数为:[0.61675 0.46075 0.40829 0.37418 0.35326 0.33725 0.32495 0.31847 0.31484
  161. 0.31264 0.30734 0.30485 0.30338 0.29994 0.29824 0.29777 0.29661 0.29866
  162. 0.3054 0.31325 0.30852 0.29957 0.30066 0.3148 0.30761 0.30359 0.30121] - training
  163. 2025-04-07 13:51:45,109 - dbmg.py - INFO - ❌ 数据库操作 - 详细错误: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - insert_trained_model_into_mongo
  164. 2025-04-07 13:51:45,111 - tf_lstm_train.py - INFO - lstm训练任务:用了 11.127336978912354 秒 - model_training