south-forecast.2025-04-03.0.log 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500
  1. 2025-04-03 09:26:58,615 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  2. - _tfmw_add_deprecation_warning
  3. 2025-04-03 09:26:58,902 - tf_fmi_train.py - INFO - Program starts execution! - model_training
  4. 2025-04-03 09:26:58,958 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  5. 2025-04-03 09:26:58,966 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubDireciton', 'HubSpeed'} - data_column_cleaning
  6. 2025-04-03 09:26:58,984 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
  7. 2025-04-03 09:26:58,997 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
  8. 2025-04-03 09:26:58,998 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
  9. 2025-04-03 09:26:59,031 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
  10. 2025-04-03 09:26:59,031 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  11. 2025-04-03 09:26:59,031 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  12. 2025-04-03 09:26:59,033 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
  13. 2025-04-03 09:26:59,033 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  14. 2025-04-03 09:26:59,033 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  15. 2025-04-03 09:26:59,036 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
  16. 2025-04-03 09:26:59,037 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
  17. 2025-04-03 09:26:59,042 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
  18. 2025-04-03 09:26:59,042 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  19. 2025-04-03 09:26:59,043 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
  20. 2025-04-03 09:26:59,043 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  21. 2025-04-03 09:26:59,044 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
  22. 2025-04-03 09:26:59,044 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  23. 2025-04-03 09:26:59,045 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
  24. 2025-04-03 09:26:59,046 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  25. 2025-04-03 09:26:59,046 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
  26. 2025-04-03 09:26:59,046 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  27. 2025-04-03 09:26:59,047 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
  28. 2025-04-03 09:26:59,048 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  29. 2025-04-03 09:26:59,048 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
  30. 2025-04-03 09:26:59,049 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
  31. 2025-04-03 09:26:59,049 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
  32. 2025-04-03 09:26:59,062 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
  33. 2025-04-03 09:26:59,062 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
  34. 2025-04-03 09:26:59,063 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
  35. 2025-04-03 09:26:59,063 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
  36. 2025-04-03 09:26:59,065 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
  37. 2025-04-03 09:26:59,065 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  38. 2025-04-03 09:26:59,066 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
  39. 2025-04-03 09:26:59,066 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  40. 2025-04-03 09:26:59,066 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
  41. 2025-04-03 09:26:59,066 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  42. 2025-04-03 09:26:59,067 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
  43. 2025-04-03 09:26:59,068 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  44. 2025-04-03 09:26:59,068 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
  45. 2025-04-03 09:26:59,068 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
  46. 2025-04-03 09:26:59,070 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
  47. 2025-04-03 09:26:59,075 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
  48. 2025-04-03 09:26:59,079 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
  49. 2025-04-03 09:26:59,081 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
  50. 2025-04-03 09:26:59,082 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  51. 2025-04-03 09:26:59,083 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  52. 2025-04-03 09:26:59,084 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  53. 2025-04-03 09:26:59,085 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  54. 2025-04-03 09:26:59,086 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  55. 2025-04-03 09:26:59,088 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
  56. 2025-04-03 09:26:59,089 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
  57. 2025-04-03 09:26:59,090 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
  58. 2025-04-03 09:26:59,091 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  59. 2025-04-03 09:26:59,092 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  60. 2025-04-03 09:26:59,093 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  61. 2025-04-03 09:26:59,094 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
  62. 2025-04-03 09:26:59,094 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
  63. 2025-04-03 09:27:01,585 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  64. 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  65. 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  66. 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  67. 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  68. 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  69. 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  70. 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  71. 2025-04-03 09:27:01,919 - dbmg.py - INFO - ❌ 系统异常: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - get_keras_model_from_mongo
  72. 2025-04-03 09:27:01,920 - tf_fmi.py - INFO - 加强训练加载模型权重失败:("Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}",) - train_init
  73. 2025-04-03 09:27:14,119 - tf_fmi.py - INFO - -----模型训练经过31轮迭代----- - training
  74. 2025-04-03 09:27:14,120 - tf_fmi.py - INFO - 训练集损失函数为:[53.51689 30.66457 18.66789 11.65896 7.50273 4.84363 3.09119 1.95949
  75. 1.25144 0.82907 0.58984 0.46101 0.39091 0.3534 0.33623 0.32777
  76. 0.31812 0.31297 0.30957 0.30708 0.30657 0.30585 0.30357 0.30433
  77. 0.30124 0.30502 0.29952 0.30102 0.30003 0.29883 0.30341] - training
  78. 2025-04-03 09:27:14,120 - tf_fmi.py - INFO - 验证集损失函数为:[33.29909 22.46415 14.20688 9.14478 5.98742 3.91006 2.55501 1.67482
  79. 1.12169 0.7885 0.59235 0.48276 0.42948 0.41301 0.37812 0.35537
  80. 0.35367 0.35108 0.34602 0.34273 0.33807 0.34047 0.33835 0.33889
  81. 0.34738 0.34364 0.34219 0.34872 0.34872 0.34948 0.3491 ] - training
  82. 2025-04-03 09:27:14,206 - dbmg.py - INFO - ❌ 数据库操作 - 详细错误: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - insert_trained_model_into_mongo
  83. 2025-04-03 09:29:33,755 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  84. - _tfmw_add_deprecation_warning
  85. 2025-04-03 09:29:33,856 - tf_fmi_train.py - INFO - Program starts execution! - model_training
  86. 2025-04-03 09:29:33,912 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  87. 2025-04-03 09:29:33,921 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning
  88. 2025-04-03 09:29:33,936 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
  89. 2025-04-03 09:29:33,946 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
  90. 2025-04-03 09:29:33,946 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
  91. 2025-04-03 09:29:33,980 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
  92. 2025-04-03 09:29:33,981 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  93. 2025-04-03 09:29:33,981 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  94. 2025-04-03 09:29:33,982 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
  95. 2025-04-03 09:29:33,982 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  96. 2025-04-03 09:29:33,982 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  97. 2025-04-03 09:29:33,986 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
  98. 2025-04-03 09:29:33,986 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
  99. 2025-04-03 09:29:33,991 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
  100. 2025-04-03 09:29:33,991 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  101. 2025-04-03 09:29:33,992 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
  102. 2025-04-03 09:29:33,992 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  103. 2025-04-03 09:29:33,993 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
  104. 2025-04-03 09:29:33,993 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  105. 2025-04-03 09:29:33,994 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
  106. 2025-04-03 09:29:33,994 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  107. 2025-04-03 09:29:33,995 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
  108. 2025-04-03 09:29:33,995 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  109. 2025-04-03 09:29:33,996 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
  110. 2025-04-03 09:29:33,996 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  111. 2025-04-03 09:29:33,997 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
  112. 2025-04-03 09:29:33,997 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
  113. 2025-04-03 09:29:33,997 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
  114. 2025-04-03 09:29:34,011 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
  115. 2025-04-03 09:29:34,011 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
  116. 2025-04-03 09:29:34,013 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
  117. 2025-04-03 09:29:34,013 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
  118. 2025-04-03 09:29:34,014 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
  119. 2025-04-03 09:29:34,015 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  120. 2025-04-03 09:29:34,016 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
  121. 2025-04-03 09:29:34,016 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  122. 2025-04-03 09:29:34,016 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
  123. 2025-04-03 09:29:34,016 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  124. 2025-04-03 09:29:34,017 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
  125. 2025-04-03 09:29:34,017 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  126. 2025-04-03 09:29:34,018 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
  127. 2025-04-03 09:29:34,018 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
  128. 2025-04-03 09:29:34,020 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
  129. 2025-04-03 09:29:34,021 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
  130. 2025-04-03 09:29:34,024 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
  131. 2025-04-03 09:29:34,026 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
  132. 2025-04-03 09:29:34,026 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  133. 2025-04-03 09:29:34,028 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  134. 2025-04-03 09:29:34,028 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  135. 2025-04-03 09:29:34,030 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  136. 2025-04-03 09:29:34,031 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  137. 2025-04-03 09:29:34,033 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
  138. 2025-04-03 09:29:34,034 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
  139. 2025-04-03 09:29:34,035 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
  140. 2025-04-03 09:29:34,036 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  141. 2025-04-03 09:29:34,037 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  142. 2025-04-03 09:29:34,038 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  143. 2025-04-03 09:29:34,039 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
  144. 2025-04-03 09:29:34,039 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
  145. 2025-04-03 09:29:53,779 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  146. - _tfmw_add_deprecation_warning
  147. 2025-04-03 09:29:53,878 - tf_fmi_train.py - INFO - Program starts execution! - model_training
  148. 2025-04-03 09:29:53,935 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  149. 2025-04-03 09:29:53,944 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning
  150. 2025-04-03 09:29:53,959 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
  151. 2025-04-03 09:29:53,969 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
  152. 2025-04-03 09:29:53,969 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
  153. 2025-04-03 09:29:54,003 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
  154. 2025-04-03 09:29:54,003 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  155. 2025-04-03 09:29:54,003 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  156. 2025-04-03 09:29:54,005 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
  157. 2025-04-03 09:29:54,005 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  158. 2025-04-03 09:29:54,005 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  159. 2025-04-03 09:29:54,009 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
  160. 2025-04-03 09:29:54,009 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
  161. 2025-04-03 09:29:54,014 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
  162. 2025-04-03 09:29:54,014 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  163. 2025-04-03 09:29:54,016 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
  164. 2025-04-03 09:29:54,016 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  165. 2025-04-03 09:29:54,017 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
  166. 2025-04-03 09:29:54,017 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  167. 2025-04-03 09:29:54,018 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
  168. 2025-04-03 09:29:54,018 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  169. 2025-04-03 09:29:54,019 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
  170. 2025-04-03 09:29:54,019 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  171. 2025-04-03 09:29:54,020 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
  172. 2025-04-03 09:29:54,020 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  173. 2025-04-03 09:29:54,021 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
  174. 2025-04-03 09:29:54,021 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
  175. 2025-04-03 09:29:54,021 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
  176. 2025-04-03 09:29:54,035 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
  177. 2025-04-03 09:29:54,035 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
  178. 2025-04-03 09:29:54,036 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
  179. 2025-04-03 09:29:54,036 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
  180. 2025-04-03 09:29:54,038 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
  181. 2025-04-03 09:29:54,039 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  182. 2025-04-03 09:29:54,039 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
  183. 2025-04-03 09:29:54,040 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  184. 2025-04-03 09:29:54,040 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
  185. 2025-04-03 09:29:54,041 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  186. 2025-04-03 09:29:54,041 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
  187. 2025-04-03 09:29:54,042 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  188. 2025-04-03 09:29:54,042 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
  189. 2025-04-03 09:29:54,042 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
  190. 2025-04-03 09:29:54,043 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
  191. 2025-04-03 09:29:54,045 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
  192. 2025-04-03 09:29:54,048 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
  193. 2025-04-03 09:29:54,049 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
  194. 2025-04-03 09:29:54,051 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  195. 2025-04-03 09:29:54,052 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  196. 2025-04-03 09:29:54,053 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  197. 2025-04-03 09:29:54,054 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  198. 2025-04-03 09:29:54,055 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  199. 2025-04-03 09:29:54,057 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
  200. 2025-04-03 09:29:54,058 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
  201. 2025-04-03 09:29:54,060 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
  202. 2025-04-03 09:29:54,061 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  203. 2025-04-03 09:29:54,062 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  204. 2025-04-03 09:29:54,063 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  205. 2025-04-03 09:29:54,064 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
  206. 2025-04-03 09:29:54,064 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
  207. 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  208. 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  209. 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  210. 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  211. 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  212. 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  213. 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  214. 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  215. 2025-04-03 09:29:56,751 - dbmg.py - INFO - ❌ 系统异常: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - get_keras_model_from_mongo
  216. 2025-04-03 09:29:56,751 - tf_fmi.py - INFO - 加强训练加载模型权重失败:("Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}",) - train_init
  217. 2025-04-03 09:30:07,199 - tf_fmi.py - INFO - -----模型训练经过26轮迭代----- - training
  218. 2025-04-03 09:30:07,199 - tf_fmi.py - INFO - 训练集损失函数为:[51.47301 28.56529 17.00252 10.45491 6.56836 4.06275 2.4503 1.46647
  219. 0.90028 0.59797 0.44225 0.36502 0.32612 0.30597 0.29727 0.29397
  220. 0.29415 0.29314 0.29399 0.29276 0.29808 0.29488 0.29392 0.29338
  221. 0.29251 0.2949 ] - training
  222. 2025-04-03 09:30:07,199 - tf_fmi.py - INFO - 验证集损失函数为:[32.08155 20.83876 12.88028 8.15244 5.13598 3.18782 1.98071 1.25191
  223. 0.83589 0.59431 0.47115 0.4052 0.37547 0.36021 0.34598 0.33878
  224. 0.35231 0.35726 0.3452 0.35579 0.36291 0.3551 0.35916 0.3541
  225. 0.34667 0.35812] - training
  226. 2025-04-03 09:30:07,261 - dbmg.py - INFO - ❌ 数据库操作 - 详细错误: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - insert_trained_model_into_mongo
  227. 2025-04-03 13:33:12,420 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  228. - _tfmw_add_deprecation_warning
  229. 2025-04-03 13:33:12,613 - tf_cnn_train.py - INFO - Program starts execution! - model_training
  230. 2025-04-03 13:33:12,674 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  231. 2025-04-03 13:33:12,683 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning
  232. 2025-04-03 13:33:12,700 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
  233. 2025-04-03 13:33:12,721 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
  234. 2025-04-03 13:33:12,721 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
  235. 2025-04-03 13:33:12,754 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
  236. 2025-04-03 13:33:12,754 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  237. 2025-04-03 13:33:12,754 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  238. 2025-04-03 13:33:12,756 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
  239. 2025-04-03 13:33:12,756 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  240. 2025-04-03 13:33:12,756 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  241. 2025-04-03 13:33:12,760 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
  242. 2025-04-03 13:33:12,760 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
  243. 2025-04-03 13:33:12,765 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
  244. 2025-04-03 13:33:12,765 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  245. 2025-04-03 13:33:12,767 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
  246. 2025-04-03 13:33:12,767 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  247. 2025-04-03 13:33:12,768 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
  248. 2025-04-03 13:33:12,768 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  249. 2025-04-03 13:33:12,769 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
  250. 2025-04-03 13:33:12,769 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  251. 2025-04-03 13:33:12,770 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
  252. 2025-04-03 13:33:12,770 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  253. 2025-04-03 13:33:12,772 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
  254. 2025-04-03 13:33:12,772 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  255. 2025-04-03 13:33:12,773 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
  256. 2025-04-03 13:33:12,773 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
  257. 2025-04-03 13:33:12,773 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
  258. 2025-04-03 13:33:12,785 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
  259. 2025-04-03 13:33:12,785 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
  260. 2025-04-03 13:33:12,787 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
  261. 2025-04-03 13:33:12,788 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
  262. 2025-04-03 13:33:12,789 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
  263. 2025-04-03 13:33:12,789 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  264. 2025-04-03 13:33:12,790 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
  265. 2025-04-03 13:33:12,790 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  266. 2025-04-03 13:33:12,791 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
  267. 2025-04-03 13:33:12,791 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  268. 2025-04-03 13:33:12,792 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
  269. 2025-04-03 13:33:12,792 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  270. 2025-04-03 13:33:12,793 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
  271. 2025-04-03 13:33:12,793 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
  272. 2025-04-03 13:33:12,793 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
  273. 2025-04-03 13:33:12,795 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
  274. 2025-04-03 13:33:12,799 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
  275. 2025-04-03 13:33:12,800 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
  276. 2025-04-03 13:33:12,801 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  277. 2025-04-03 13:33:12,802 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  278. 2025-04-03 13:33:12,803 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  279. 2025-04-03 13:33:12,804 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  280. 2025-04-03 13:33:12,805 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  281. 2025-04-03 13:33:12,807 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
  282. 2025-04-03 13:33:12,808 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
  283. 2025-04-03 13:33:12,809 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
  284. 2025-04-03 13:33:12,810 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  285. 2025-04-03 13:33:12,811 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  286. 2025-04-03 13:33:12,812 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  287. 2025-04-03 13:33:12,813 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
  288. 2025-04-03 13:33:12,813 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
  289. 2025-04-03 13:33:15,280 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  290. 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  291. 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  292. 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  293. 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  294. 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  295. 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  296. 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  297. 2025-04-03 13:33:15,493 - dbmg.py - INFO - ❌ 系统异常: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - get_keras_model_from_mongo
  298. 2025-04-03 13:33:15,493 - tf_cnn.py - INFO - 加强训练加载模型权重失败:("Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}",) - train_init
  299. 2025-04-03 13:33:26,756 - tf_cnn.py - INFO - -----模型训练经过76轮迭代----- - training
  300. 2025-04-03 13:33:26,756 - tf_cnn.py - INFO - 训练集损失函数为:[5.3196 2.96034 1.83915 1.399 1.15213 0.97754 0.84255 0.73772 0.66046
  301. 0.60034 0.55292 0.51518 0.48333 0.45676 0.43364 0.41425 0.39769 0.3834
  302. 0.37138 0.36097 0.35203 0.3447 0.33776 0.33146 0.32607 0.32143 0.31722
  303. 0.31405 0.31122 0.30854 0.306 0.30391 0.30194 0.30016 0.29861 0.29733
  304. 0.29619 0.29507 0.29394 0.29281 0.2917 0.29055 0.28939 0.28831 0.28746
  305. 0.28662 0.28581 0.285 0.2843 0.28371 0.28309 0.28248 0.28181 0.28114
  306. 0.28057 0.28002 0.27949 0.27907 0.27876 0.27847 0.27816 0.27786 0.27756
  307. 0.27726 0.27697 0.27668 0.27638 0.27609 0.27581 0.27552 0.27525 0.27498
  308. 0.27482 0.27454 0.27427 0.27401] - training
  309. 2025-04-03 13:33:26,757 - tf_cnn.py - INFO - 验证集损失函数为:[3.92513 2.23538 1.60418 1.28774 1.08642 0.93493 0.81426 0.72426 0.65625
  310. 0.6028 0.5611 0.52649 0.49804 0.47311 0.45227 0.43444 0.41905 0.40589
  311. 0.39496 0.38506 0.37721 0.36995 0.3632 0.35745 0.35234 0.3479 0.34436
  312. 0.34159 0.33884 0.33624 0.33404 0.33224 0.33051 0.32884 0.32741 0.32638
  313. 0.32527 0.32424 0.32322 0.32202 0.32096 0.3199 0.31874 0.31774 0.31694
  314. 0.31608 0.31535 0.31433 0.31367 0.31316 0.31234 0.3115 0.31067 0.30995
  315. 0.30914 0.30852 0.30783 0.30739 0.30679 0.30646 0.30603 0.30568 0.30537
  316. 0.3051 0.30508 0.3049 0.30503 0.30513 0.30515 0.30524 0.3053 0.30525
  317. 0.30495 0.30523 0.30534 0.30523] - training
  318. 2025-04-03 13:33:26,794 - dbmg.py - INFO - ❌ 数据库操作 - 详细错误: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - insert_trained_model_into_mongo
  319. 2025-04-03 13:51:00,688 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  320. - _tfmw_add_deprecation_warning
  321. 2025-04-03 13:51:26,825 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  322. - _tfmw_add_deprecation_warning
  323. 2025-04-03 13:51:26,937 - tf_cnn_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  324. File "E:\compete\app\common\dbmg.py", line 436, in get_scaler_model_from_mongo
  325. scaler_doc = collection.find_one(
  326. ^^^^^^^^^^^^^^^^^^^^
  327. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\collection.py", line 1495, in find_one
  328. for result in cursor.limit(-1):
  329. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1243, in next
  330. if len(self.__data) or self._refresh():
  331. ^^^^^^^^^^^^^^^
  332. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1160, in _refresh
  333. self.__send_message(q)
  334. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1039, in __send_message
  335. response = client._run_operation(
  336. ^^^^^^^^^^^^^^^^^^^^^^
  337. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\_csot.py", line 108, in csot_wrapper
  338. return func(self, *args, **kwargs)
  339. ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  340. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1425, in _run_operation
  341. return self._retryable_read(
  342. ^^^^^^^^^^^^^^^^^^^^^
  343. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1534, in _retryable_read
  344. return self._retry_internal(
  345. ^^^^^^^^^^^^^^^^^^^^^
  346. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\_csot.py", line 108, in csot_wrapper
  347. return func(self, *args, **kwargs)
  348. ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  349. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1501, in _retry_internal
  350. ).run()
  351. ^^^^^
  352. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 2347, in run
  353. return self._read() if self._is_read else self._write()
  354. ^^^^^^^^^^^^
  355. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 2479, in _read
  356. with self._client._conn_from_server(self._read_pref, self._server, self._session) as (
  357. File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__
  358. return next(self.gen)
  359. ^^^^^^^^^^^^^^
  360. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1351, in _conn_from_server
  361. with self._checkout(server, session) as conn:
  362. File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__
  363. return next(self.gen)
  364. ^^^^^^^^^^^^^^
  365. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1260, in _checkout
  366. with server.checkout(handler=err_handler) as conn:
  367. File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__
  368. return next(self.gen)
  369. ^^^^^^^^^^^^^^
  370. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1763, in checkout
  371. conn = self._get_conn(checkout_started_time, handler=handler)
  372. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  373. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1921, in _get_conn
  374. conn = self.connect(handler=handler)
  375. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  376. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1725, in connect
  377. conn.authenticate()
  378. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1098, in authenticate
  379. auth.authenticate(creds, self, reauthenticate=reauthenticate)
  380. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 656, in authenticate
  381. auth_func(credentials, conn)
  382. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 560, in _authenticate_default
  383. return _authenticate_scram(credentials, conn, "SCRAM-SHA-1")
  384. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  385. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 299, in _authenticate_scram
  386. res = conn.command(source, cmd)
  387. ^^^^^^^^^^^^^^^^^^^^^^^^^
  388. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\helpers.py", line 342, in inner
  389. return func(*args, **kwargs)
  390. ^^^^^^^^^^^^^^^^^^^^^
  391. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 988, in command
  392. return command(
  393. ^^^^^^^^
  394. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\network.py", line 212, in command
  395. helpers._check_command_response(
  396. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\helpers.py", line 248, in _check_command_response
  397. raise OperationFailure(errmsg, code, response, max_wire_version)
  398. pymongo.errors.OperationFailure: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}
  399. The above exception was the direct cause of the following exception:
  400. Traceback (most recent call last):
  401. File "E:\compete\app\predict\tf_cnn_pre.py", line 41, in model_prediction
  402. feature_scaler, target_scaler = mgUtils.get_scaler_model_from_mongo(params)
  403. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  404. File "E:\compete\app\common\dbmg.py", line 474, in get_scaler_model_from_mongo
  405. raise RuntimeError(f"🔌 数据库操作失败: {str(e)}") from e
  406. RuntimeError: 🔌 数据库操作失败: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}
  407. - model_prediction
  408. 2025-04-03 13:51:26,942 - tf_cnn_pre.py - INFO - cnn预测任务:用了 0.01752614974975586 秒 - model_prediction
  409. 2025-04-03 13:59:47,178 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  410. - _tfmw_add_deprecation_warning
  411. 2025-04-03 13:59:47,295 - tf_cnn_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  412. File "E:\compete\app\common\dbmg.py", line 436, in get_scaler_model_from_mongo
  413. scaler_doc = collection.find_one(
  414. ^^^^^^^^^^^^^^^^^^^^
  415. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\collection.py", line 1495, in find_one
  416. for result in cursor.limit(-1):
  417. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1243, in next
  418. if len(self.__data) or self._refresh():
  419. ^^^^^^^^^^^^^^^
  420. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1160, in _refresh
  421. self.__send_message(q)
  422. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1039, in __send_message
  423. response = client._run_operation(
  424. ^^^^^^^^^^^^^^^^^^^^^^
  425. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\_csot.py", line 108, in csot_wrapper
  426. return func(self, *args, **kwargs)
  427. ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  428. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1425, in _run_operation
  429. return self._retryable_read(
  430. ^^^^^^^^^^^^^^^^^^^^^
  431. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1534, in _retryable_read
  432. return self._retry_internal(
  433. ^^^^^^^^^^^^^^^^^^^^^
  434. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\_csot.py", line 108, in csot_wrapper
  435. return func(self, *args, **kwargs)
  436. ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  437. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1501, in _retry_internal
  438. ).run()
  439. ^^^^^
  440. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 2347, in run
  441. return self._read() if self._is_read else self._write()
  442. ^^^^^^^^^^^^
  443. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 2479, in _read
  444. with self._client._conn_from_server(self._read_pref, self._server, self._session) as (
  445. File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__
  446. return next(self.gen)
  447. ^^^^^^^^^^^^^^
  448. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1351, in _conn_from_server
  449. with self._checkout(server, session) as conn:
  450. File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__
  451. return next(self.gen)
  452. ^^^^^^^^^^^^^^
  453. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1260, in _checkout
  454. with server.checkout(handler=err_handler) as conn:
  455. File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__
  456. return next(self.gen)
  457. ^^^^^^^^^^^^^^
  458. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1763, in checkout
  459. conn = self._get_conn(checkout_started_time, handler=handler)
  460. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  461. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1921, in _get_conn
  462. conn = self.connect(handler=handler)
  463. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  464. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1725, in connect
  465. conn.authenticate()
  466. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1098, in authenticate
  467. auth.authenticate(creds, self, reauthenticate=reauthenticate)
  468. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 656, in authenticate
  469. auth_func(credentials, conn)
  470. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 560, in _authenticate_default
  471. return _authenticate_scram(credentials, conn, "SCRAM-SHA-1")
  472. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  473. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 299, in _authenticate_scram
  474. res = conn.command(source, cmd)
  475. ^^^^^^^^^^^^^^^^^^^^^^^^^
  476. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\helpers.py", line 342, in inner
  477. return func(*args, **kwargs)
  478. ^^^^^^^^^^^^^^^^^^^^^
  479. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 988, in command
  480. return command(
  481. ^^^^^^^^
  482. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\network.py", line 212, in command
  483. helpers._check_command_response(
  484. File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\helpers.py", line 248, in _check_command_response
  485. raise OperationFailure(errmsg, code, response, max_wire_version)
  486. pymongo.errors.OperationFailure: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}
  487. The above exception was the direct cause of the following exception:
  488. Traceback (most recent call last):
  489. File "E:\compete\app\predict\tf_cnn_pre.py", line 41, in model_prediction
  490. feature_scaler, target_scaler = mgUtils.get_scaler_model_from_mongo(params)
  491. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  492. File "E:\compete\app\common\dbmg.py", line 474, in get_scaler_model_from_mongo
  493. raise RuntimeError(f"🔌 数据库操作失败: {str(e)}") from e
  494. RuntimeError: 🔌 数据库操作失败: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}
  495. - model_prediction
  496. 2025-04-03 13:59:47,299 - tf_cnn_pre.py - INFO - cnn预测任务:用了 0.01714491844177246 秒 - model_prediction