123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500 |
- 2025-04-03 09:26:58,615 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-04-03 09:26:58,902 - tf_fmi_train.py - INFO - Program starts execution! - model_training
- 2025-04-03 09:26:58,958 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-04-03 09:26:58,966 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubDireciton', 'HubSpeed'} - data_column_cleaning
- 2025-04-03 09:26:58,984 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
- 2025-04-03 09:26:58,997 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
- 2025-04-03 09:26:58,998 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
- 2025-04-03 09:26:59,031 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
- 2025-04-03 09:26:59,031 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
- 2025-04-03 09:26:59,031 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
- 2025-04-03 09:26:59,033 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
- 2025-04-03 09:26:59,033 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
- 2025-04-03 09:26:59,033 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
- 2025-04-03 09:26:59,036 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
- 2025-04-03 09:26:59,037 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
- 2025-04-03 09:26:59,042 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
- 2025-04-03 09:26:59,042 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
- 2025-04-03 09:26:59,043 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
- 2025-04-03 09:26:59,043 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
- 2025-04-03 09:26:59,044 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
- 2025-04-03 09:26:59,044 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
- 2025-04-03 09:26:59,045 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
- 2025-04-03 09:26:59,046 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
- 2025-04-03 09:26:59,046 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
- 2025-04-03 09:26:59,046 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
- 2025-04-03 09:26:59,047 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
- 2025-04-03 09:26:59,048 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
- 2025-04-03 09:26:59,048 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
- 2025-04-03 09:26:59,049 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
- 2025-04-03 09:26:59,049 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
- 2025-04-03 09:26:59,062 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
- 2025-04-03 09:26:59,062 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
- 2025-04-03 09:26:59,063 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
- 2025-04-03 09:26:59,063 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
- 2025-04-03 09:26:59,065 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
- 2025-04-03 09:26:59,065 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
- 2025-04-03 09:26:59,066 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
- 2025-04-03 09:26:59,066 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
- 2025-04-03 09:26:59,066 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
- 2025-04-03 09:26:59,066 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
- 2025-04-03 09:26:59,067 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
- 2025-04-03 09:26:59,068 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
- 2025-04-03 09:26:59,068 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
- 2025-04-03 09:26:59,068 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
- 2025-04-03 09:26:59,070 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
- 2025-04-03 09:26:59,075 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:26:59,079 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
- 2025-04-03 09:26:59,081 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:26:59,082 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:26:59,083 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:26:59,084 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:26:59,085 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:26:59,086 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:26:59,088 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
- 2025-04-03 09:26:59,089 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:26:59,090 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:26:59,091 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:26:59,092 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:26:59,093 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:26:59,094 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:26:59,094 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
- 2025-04-03 09:27:01,585 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
- 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
- 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
- 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
- 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
- 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
- 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
- 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
- 2025-04-03 09:27:01,919 - dbmg.py - INFO - ❌ 系统异常: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - get_keras_model_from_mongo
- 2025-04-03 09:27:01,920 - tf_fmi.py - INFO - 加强训练加载模型权重失败:("Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}",) - train_init
- 2025-04-03 09:27:14,119 - tf_fmi.py - INFO - -----模型训练经过31轮迭代----- - training
- 2025-04-03 09:27:14,120 - tf_fmi.py - INFO - 训练集损失函数为:[53.51689 30.66457 18.66789 11.65896 7.50273 4.84363 3.09119 1.95949
- 1.25144 0.82907 0.58984 0.46101 0.39091 0.3534 0.33623 0.32777
- 0.31812 0.31297 0.30957 0.30708 0.30657 0.30585 0.30357 0.30433
- 0.30124 0.30502 0.29952 0.30102 0.30003 0.29883 0.30341] - training
- 2025-04-03 09:27:14,120 - tf_fmi.py - INFO - 验证集损失函数为:[33.29909 22.46415 14.20688 9.14478 5.98742 3.91006 2.55501 1.67482
- 1.12169 0.7885 0.59235 0.48276 0.42948 0.41301 0.37812 0.35537
- 0.35367 0.35108 0.34602 0.34273 0.33807 0.34047 0.33835 0.33889
- 0.34738 0.34364 0.34219 0.34872 0.34872 0.34948 0.3491 ] - training
- 2025-04-03 09:27:14,206 - dbmg.py - INFO - ❌ 数据库操作 - 详细错误: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - insert_trained_model_into_mongo
- 2025-04-03 09:29:33,755 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-04-03 09:29:33,856 - tf_fmi_train.py - INFO - Program starts execution! - model_training
- 2025-04-03 09:29:33,912 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-04-03 09:29:33,921 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning
- 2025-04-03 09:29:33,936 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
- 2025-04-03 09:29:33,946 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
- 2025-04-03 09:29:33,946 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
- 2025-04-03 09:29:33,980 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
- 2025-04-03 09:29:33,981 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
- 2025-04-03 09:29:33,981 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
- 2025-04-03 09:29:33,982 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
- 2025-04-03 09:29:33,982 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
- 2025-04-03 09:29:33,982 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
- 2025-04-03 09:29:33,986 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
- 2025-04-03 09:29:33,986 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
- 2025-04-03 09:29:33,991 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
- 2025-04-03 09:29:33,991 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
- 2025-04-03 09:29:33,992 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
- 2025-04-03 09:29:33,992 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
- 2025-04-03 09:29:33,993 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
- 2025-04-03 09:29:33,993 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
- 2025-04-03 09:29:33,994 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
- 2025-04-03 09:29:33,994 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
- 2025-04-03 09:29:33,995 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
- 2025-04-03 09:29:33,995 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
- 2025-04-03 09:29:33,996 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
- 2025-04-03 09:29:33,996 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
- 2025-04-03 09:29:33,997 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
- 2025-04-03 09:29:33,997 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
- 2025-04-03 09:29:33,997 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
- 2025-04-03 09:29:34,011 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
- 2025-04-03 09:29:34,011 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
- 2025-04-03 09:29:34,013 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
- 2025-04-03 09:29:34,013 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
- 2025-04-03 09:29:34,014 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
- 2025-04-03 09:29:34,015 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
- 2025-04-03 09:29:34,016 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
- 2025-04-03 09:29:34,016 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
- 2025-04-03 09:29:34,016 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
- 2025-04-03 09:29:34,016 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
- 2025-04-03 09:29:34,017 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
- 2025-04-03 09:29:34,017 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
- 2025-04-03 09:29:34,018 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
- 2025-04-03 09:29:34,018 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
- 2025-04-03 09:29:34,020 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
- 2025-04-03 09:29:34,021 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:34,024 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
- 2025-04-03 09:29:34,026 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:34,026 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:34,028 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:34,028 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:34,030 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:34,031 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:34,033 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
- 2025-04-03 09:29:34,034 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:34,035 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:34,036 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:34,037 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:34,038 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:34,039 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:34,039 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
- 2025-04-03 09:29:53,779 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-04-03 09:29:53,878 - tf_fmi_train.py - INFO - Program starts execution! - model_training
- 2025-04-03 09:29:53,935 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-04-03 09:29:53,944 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning
- 2025-04-03 09:29:53,959 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
- 2025-04-03 09:29:53,969 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
- 2025-04-03 09:29:53,969 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
- 2025-04-03 09:29:54,003 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
- 2025-04-03 09:29:54,003 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
- 2025-04-03 09:29:54,003 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
- 2025-04-03 09:29:54,005 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
- 2025-04-03 09:29:54,005 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
- 2025-04-03 09:29:54,005 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
- 2025-04-03 09:29:54,009 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
- 2025-04-03 09:29:54,009 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
- 2025-04-03 09:29:54,014 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
- 2025-04-03 09:29:54,014 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
- 2025-04-03 09:29:54,016 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
- 2025-04-03 09:29:54,016 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
- 2025-04-03 09:29:54,017 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
- 2025-04-03 09:29:54,017 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
- 2025-04-03 09:29:54,018 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
- 2025-04-03 09:29:54,018 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
- 2025-04-03 09:29:54,019 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
- 2025-04-03 09:29:54,019 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
- 2025-04-03 09:29:54,020 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
- 2025-04-03 09:29:54,020 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
- 2025-04-03 09:29:54,021 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
- 2025-04-03 09:29:54,021 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
- 2025-04-03 09:29:54,021 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
- 2025-04-03 09:29:54,035 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
- 2025-04-03 09:29:54,035 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
- 2025-04-03 09:29:54,036 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
- 2025-04-03 09:29:54,036 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
- 2025-04-03 09:29:54,038 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
- 2025-04-03 09:29:54,039 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
- 2025-04-03 09:29:54,039 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
- 2025-04-03 09:29:54,040 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
- 2025-04-03 09:29:54,040 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
- 2025-04-03 09:29:54,041 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
- 2025-04-03 09:29:54,041 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
- 2025-04-03 09:29:54,042 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
- 2025-04-03 09:29:54,042 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
- 2025-04-03 09:29:54,042 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
- 2025-04-03 09:29:54,043 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
- 2025-04-03 09:29:54,045 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:54,048 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
- 2025-04-03 09:29:54,049 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:54,051 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:54,052 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:54,053 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:54,054 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:54,055 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:54,057 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
- 2025-04-03 09:29:54,058 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:54,060 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:54,061 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:54,062 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:54,063 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:54,064 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
- 2025-04-03 09:29:54,064 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
- 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
- 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
- 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
- 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
- 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
- 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
- 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
- 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
- 2025-04-03 09:29:56,751 - dbmg.py - INFO - ❌ 系统异常: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - get_keras_model_from_mongo
- 2025-04-03 09:29:56,751 - tf_fmi.py - INFO - 加强训练加载模型权重失败:("Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}",) - train_init
- 2025-04-03 09:30:07,199 - tf_fmi.py - INFO - -----模型训练经过26轮迭代----- - training
- 2025-04-03 09:30:07,199 - tf_fmi.py - INFO - 训练集损失函数为:[51.47301 28.56529 17.00252 10.45491 6.56836 4.06275 2.4503 1.46647
- 0.90028 0.59797 0.44225 0.36502 0.32612 0.30597 0.29727 0.29397
- 0.29415 0.29314 0.29399 0.29276 0.29808 0.29488 0.29392 0.29338
- 0.29251 0.2949 ] - training
- 2025-04-03 09:30:07,199 - tf_fmi.py - INFO - 验证集损失函数为:[32.08155 20.83876 12.88028 8.15244 5.13598 3.18782 1.98071 1.25191
- 0.83589 0.59431 0.47115 0.4052 0.37547 0.36021 0.34598 0.33878
- 0.35231 0.35726 0.3452 0.35579 0.36291 0.3551 0.35916 0.3541
- 0.34667 0.35812] - training
- 2025-04-03 09:30:07,261 - dbmg.py - INFO - ❌ 数据库操作 - 详细错误: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - insert_trained_model_into_mongo
- 2025-04-03 13:33:12,420 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-04-03 13:33:12,613 - tf_cnn_train.py - INFO - Program starts execution! - model_training
- 2025-04-03 13:33:12,674 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-04-03 13:33:12,683 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning
- 2025-04-03 13:33:12,700 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
- 2025-04-03 13:33:12,721 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
- 2025-04-03 13:33:12,721 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
- 2025-04-03 13:33:12,754 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
- 2025-04-03 13:33:12,754 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
- 2025-04-03 13:33:12,754 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
- 2025-04-03 13:33:12,756 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
- 2025-04-03 13:33:12,756 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
- 2025-04-03 13:33:12,756 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
- 2025-04-03 13:33:12,760 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
- 2025-04-03 13:33:12,760 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
- 2025-04-03 13:33:12,765 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
- 2025-04-03 13:33:12,765 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
- 2025-04-03 13:33:12,767 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
- 2025-04-03 13:33:12,767 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
- 2025-04-03 13:33:12,768 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
- 2025-04-03 13:33:12,768 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
- 2025-04-03 13:33:12,769 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
- 2025-04-03 13:33:12,769 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
- 2025-04-03 13:33:12,770 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
- 2025-04-03 13:33:12,770 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
- 2025-04-03 13:33:12,772 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
- 2025-04-03 13:33:12,772 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
- 2025-04-03 13:33:12,773 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
- 2025-04-03 13:33:12,773 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
- 2025-04-03 13:33:12,773 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
- 2025-04-03 13:33:12,785 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
- 2025-04-03 13:33:12,785 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
- 2025-04-03 13:33:12,787 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
- 2025-04-03 13:33:12,788 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
- 2025-04-03 13:33:12,789 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
- 2025-04-03 13:33:12,789 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
- 2025-04-03 13:33:12,790 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
- 2025-04-03 13:33:12,790 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
- 2025-04-03 13:33:12,791 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
- 2025-04-03 13:33:12,791 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
- 2025-04-03 13:33:12,792 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
- 2025-04-03 13:33:12,792 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
- 2025-04-03 13:33:12,793 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
- 2025-04-03 13:33:12,793 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
- 2025-04-03 13:33:12,793 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
- 2025-04-03 13:33:12,795 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
- 2025-04-03 13:33:12,799 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
- 2025-04-03 13:33:12,800 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
- 2025-04-03 13:33:12,801 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
- 2025-04-03 13:33:12,802 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
- 2025-04-03 13:33:12,803 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
- 2025-04-03 13:33:12,804 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
- 2025-04-03 13:33:12,805 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
- 2025-04-03 13:33:12,807 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
- 2025-04-03 13:33:12,808 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
- 2025-04-03 13:33:12,809 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
- 2025-04-03 13:33:12,810 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
- 2025-04-03 13:33:12,811 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
- 2025-04-03 13:33:12,812 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
- 2025-04-03 13:33:12,813 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
- 2025-04-03 13:33:12,813 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
- 2025-04-03 13:33:15,280 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
- 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
- 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
- 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
- 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
- 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
- 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
- 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
- 2025-04-03 13:33:15,493 - dbmg.py - INFO - ❌ 系统异常: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - get_keras_model_from_mongo
- 2025-04-03 13:33:15,493 - tf_cnn.py - INFO - 加强训练加载模型权重失败:("Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}",) - train_init
- 2025-04-03 13:33:26,756 - tf_cnn.py - INFO - -----模型训练经过76轮迭代----- - training
- 2025-04-03 13:33:26,756 - tf_cnn.py - INFO - 训练集损失函数为:[5.3196 2.96034 1.83915 1.399 1.15213 0.97754 0.84255 0.73772 0.66046
- 0.60034 0.55292 0.51518 0.48333 0.45676 0.43364 0.41425 0.39769 0.3834
- 0.37138 0.36097 0.35203 0.3447 0.33776 0.33146 0.32607 0.32143 0.31722
- 0.31405 0.31122 0.30854 0.306 0.30391 0.30194 0.30016 0.29861 0.29733
- 0.29619 0.29507 0.29394 0.29281 0.2917 0.29055 0.28939 0.28831 0.28746
- 0.28662 0.28581 0.285 0.2843 0.28371 0.28309 0.28248 0.28181 0.28114
- 0.28057 0.28002 0.27949 0.27907 0.27876 0.27847 0.27816 0.27786 0.27756
- 0.27726 0.27697 0.27668 0.27638 0.27609 0.27581 0.27552 0.27525 0.27498
- 0.27482 0.27454 0.27427 0.27401] - training
- 2025-04-03 13:33:26,757 - tf_cnn.py - INFO - 验证集损失函数为:[3.92513 2.23538 1.60418 1.28774 1.08642 0.93493 0.81426 0.72426 0.65625
- 0.6028 0.5611 0.52649 0.49804 0.47311 0.45227 0.43444 0.41905 0.40589
- 0.39496 0.38506 0.37721 0.36995 0.3632 0.35745 0.35234 0.3479 0.34436
- 0.34159 0.33884 0.33624 0.33404 0.33224 0.33051 0.32884 0.32741 0.32638
- 0.32527 0.32424 0.32322 0.32202 0.32096 0.3199 0.31874 0.31774 0.31694
- 0.31608 0.31535 0.31433 0.31367 0.31316 0.31234 0.3115 0.31067 0.30995
- 0.30914 0.30852 0.30783 0.30739 0.30679 0.30646 0.30603 0.30568 0.30537
- 0.3051 0.30508 0.3049 0.30503 0.30513 0.30515 0.30524 0.3053 0.30525
- 0.30495 0.30523 0.30534 0.30523] - training
- 2025-04-03 13:33:26,794 - dbmg.py - INFO - ❌ 数据库操作 - 详细错误: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - insert_trained_model_into_mongo
- 2025-04-03 13:51:00,688 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-04-03 13:51:26,825 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-04-03 13:51:26,937 - tf_cnn_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\common\dbmg.py", line 436, in get_scaler_model_from_mongo
- scaler_doc = collection.find_one(
- ^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\collection.py", line 1495, in find_one
- for result in cursor.limit(-1):
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1243, in next
- if len(self.__data) or self._refresh():
- ^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1160, in _refresh
- self.__send_message(q)
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1039, in __send_message
- response = client._run_operation(
- ^^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\_csot.py", line 108, in csot_wrapper
- return func(self, *args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1425, in _run_operation
- return self._retryable_read(
- ^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1534, in _retryable_read
- return self._retry_internal(
- ^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\_csot.py", line 108, in csot_wrapper
- return func(self, *args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1501, in _retry_internal
- ).run()
- ^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 2347, in run
- return self._read() if self._is_read else self._write()
- ^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 2479, in _read
- with self._client._conn_from_server(self._read_pref, self._server, self._session) as (
- File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__
- return next(self.gen)
- ^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1351, in _conn_from_server
- with self._checkout(server, session) as conn:
- File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__
- return next(self.gen)
- ^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1260, in _checkout
- with server.checkout(handler=err_handler) as conn:
- File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__
- return next(self.gen)
- ^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1763, in checkout
- conn = self._get_conn(checkout_started_time, handler=handler)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1921, in _get_conn
- conn = self.connect(handler=handler)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1725, in connect
- conn.authenticate()
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1098, in authenticate
- auth.authenticate(creds, self, reauthenticate=reauthenticate)
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 656, in authenticate
- auth_func(credentials, conn)
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 560, in _authenticate_default
- return _authenticate_scram(credentials, conn, "SCRAM-SHA-1")
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 299, in _authenticate_scram
- res = conn.command(source, cmd)
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\helpers.py", line 342, in inner
- return func(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 988, in command
- return command(
- ^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\network.py", line 212, in command
- helpers._check_command_response(
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\helpers.py", line 248, in _check_command_response
- raise OperationFailure(errmsg, code, response, max_wire_version)
- pymongo.errors.OperationFailure: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}
- The above exception was the direct cause of the following exception:
- Traceback (most recent call last):
- File "E:\compete\app\predict\tf_cnn_pre.py", line 41, in model_prediction
- feature_scaler, target_scaler = mgUtils.get_scaler_model_from_mongo(params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "E:\compete\app\common\dbmg.py", line 474, in get_scaler_model_from_mongo
- raise RuntimeError(f"🔌 数据库操作失败: {str(e)}") from e
- RuntimeError: 🔌 数据库操作失败: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}
- - model_prediction
- 2025-04-03 13:51:26,942 - tf_cnn_pre.py - INFO - cnn预测任务:用了 0.01752614974975586 秒 - model_prediction
- 2025-04-03 13:59:47,178 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-04-03 13:59:47,295 - tf_cnn_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\common\dbmg.py", line 436, in get_scaler_model_from_mongo
- scaler_doc = collection.find_one(
- ^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\collection.py", line 1495, in find_one
- for result in cursor.limit(-1):
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1243, in next
- if len(self.__data) or self._refresh():
- ^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1160, in _refresh
- self.__send_message(q)
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1039, in __send_message
- response = client._run_operation(
- ^^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\_csot.py", line 108, in csot_wrapper
- return func(self, *args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1425, in _run_operation
- return self._retryable_read(
- ^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1534, in _retryable_read
- return self._retry_internal(
- ^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\_csot.py", line 108, in csot_wrapper
- return func(self, *args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1501, in _retry_internal
- ).run()
- ^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 2347, in run
- return self._read() if self._is_read else self._write()
- ^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 2479, in _read
- with self._client._conn_from_server(self._read_pref, self._server, self._session) as (
- File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__
- return next(self.gen)
- ^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1351, in _conn_from_server
- with self._checkout(server, session) as conn:
- File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__
- return next(self.gen)
- ^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1260, in _checkout
- with server.checkout(handler=err_handler) as conn:
- File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__
- return next(self.gen)
- ^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1763, in checkout
- conn = self._get_conn(checkout_started_time, handler=handler)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1921, in _get_conn
- conn = self.connect(handler=handler)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1725, in connect
- conn.authenticate()
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1098, in authenticate
- auth.authenticate(creds, self, reauthenticate=reauthenticate)
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 656, in authenticate
- auth_func(credentials, conn)
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 560, in _authenticate_default
- return _authenticate_scram(credentials, conn, "SCRAM-SHA-1")
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 299, in _authenticate_scram
- res = conn.command(source, cmd)
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\helpers.py", line 342, in inner
- return func(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 988, in command
- return command(
- ^^^^^^^^
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\network.py", line 212, in command
- helpers._check_command_response(
- File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\helpers.py", line 248, in _check_command_response
- raise OperationFailure(errmsg, code, response, max_wire_version)
- pymongo.errors.OperationFailure: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}
- The above exception was the direct cause of the following exception:
- Traceback (most recent call last):
- File "E:\compete\app\predict\tf_cnn_pre.py", line 41, in model_prediction
- feature_scaler, target_scaler = mgUtils.get_scaler_model_from_mongo(params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "E:\compete\app\common\dbmg.py", line 474, in get_scaler_model_from_mongo
- raise RuntimeError(f"🔌 数据库操作失败: {str(e)}") from e
- RuntimeError: 🔌 数据库操作失败: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}
- - model_prediction
- 2025-04-03 13:59:47,299 - tf_cnn_pre.py - INFO - cnn预测任务:用了 0.01714491844177246 秒 - model_prediction
|