123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- #!/usr/bin/env python
- # -*- coding:utf-8 -*-
- # @FileName :tf_lstm_pre.py
- # @Time :2025/2/13 10:52
- # @Author :David
- # @Company: shenyang JY
- import os.path
- import pandas as pd
- import numpy as np
- import logging, argparse, traceback
- from app.common.data_handler import DataHandler, write_number_to_file
- from threading import Lock
- import time, json
- model_lock = Lock()
- from itertools import chain
- from typing import Dict, Any
- from app.common.config import logger, parser
- from app.common.tf_lstm import TSHandler
- from app.common.dbmg import MongoUtils
- np.random.seed(42) # NumPy随机种子
- mgUtils = MongoUtils(logger)
- class ModelPre(object):
- """模型训练器封装类"""
- def __init__(self,
- pre_data: pd.DataFrame,
- capacity: float,
- config: Dict[str, Any] = None,
- ):
- self.config = config
- self.logger = logger
- self.pre_data = pre_data
- self.capacity = capacity
- self.gpu_id = config.get('gpu_assignment')
- self._setup_resources()
- # 初始化组件
- self.input_file = config.get("input_file")
- self.opt = argparse.Namespace(**config)
- self.dh = DataHandler(logger, self.opt)
- self.ts = TSHandler(logger, self.opt)
- self.mgUtils = MongoUtils(logger)
- def _setup_resources(self):
- """GPU资源分配"""
- if self.gpu_id is not None:
- os.environ["CUDA_VISIBLE_DEVICES"] = str(self.gpu_id)
- self.logger.info(f"GPU {self.gpu_id} allocated")
- def predict(self, pre_area=False):
- # 获取程序开始时间
- start_time = time.time()
- success = 0
- print("Program starts execution!")
- pre_id = self.config['area_id'] if pre_area else self.config['station_id']
- pre_type = 'a' if pre_area else 's'
- output_file = os.path.join(self.opt.dqyc_base_path, self.input_file)
- output_file = output_file.replace('IN', 'OUT') if pre_area else os.path.join(str(output_file), pre_id)
- file = 'DQYC_OUT_PREDICT_POWER.txt'
- status_file = 'STATUS.TXT'
- try:
- self.config['model_table'] = self.config['model_table'] + f'_{pre_type}_'+str(pre_id)
- self.config['scaler_table'] = self.config['scaler_table'] + f'_{pre_type}_'+ str(pre_id)
- feature_scaler, target_scaler = mgUtils.get_scaler_model_from_mongo(self.config)
- self.ts.opt.cap = round(target_scaler.transform(np.array([[self.capacity]]))[0, 0], 2)
- self.ts.get_model(self.config)
- print("!!!!", self.ts.model_params)
- self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
- scaled_pre_x, pre_data = self.dh.pre_data_handler(self.pre_data, feature_scaler)
- success = 1
- # 更新算法状态:1. 启动成功
- write_number_to_file(os.path.join(str(output_file), status_file), 1, 1, 'rewrite')
- logger.info("算法启动成功")
- res = list(chain.from_iterable(target_scaler.inverse_transform([self.ts.predict(scaled_pre_x).flatten()])))
- pre_data['Power'] = res[:len(pre_data)]
- pre_data['PlantID'] = pre_id
- pre_data = pre_data[['PlantID', self.config['col_time'], 'Power']]
- pre_data.loc[:, 'Power'] = pre_data['Power'].round(2)
- pre_data.loc[pre_data['Power'] > self.capacity, 'Power'] = self.capacity
- pre_data.loc[pre_data['Power'] < 0, 'Power'] = 0
- pre_data.to_csv(os.path.join(str(output_file), file), sep=' ', index=False)
- # 更新算法状态:正常结束
- write_number_to_file(os.path.join(str(output_file), status_file), 2, 2)
- logger.info("算法正常结束")
- except Exception as e:
- # 如果算法状态没启动,不更新
- if success:
- write_number_to_file(os.path.join(str(output_file), status_file), 2, 3)
- my_exception = traceback.format_exc()
- my_exception.replace("\n", "\t")
- logger.info("算法状态异常:{}".format(my_exception))
- end_time = time.time()
- logger.info("lstm预测任务:用了 %s 秒 " % (end_time - start_time))
- if __name__ == "__main__":
- print("Program starts execution!")
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- logger = logging.getLogger("model_training_bp log")
- # serve(app, host="0.0.0.0", port=1010x, threads=4)
- print("server start!")
- # ------------------------测试代码------------------------
- args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
- 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083_test', 'col_time': 'date_time', 'mongodb_write_table': 'j00083_rs',
- 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
- args_dict['features'] = args_dict['features'].split(',')
- arguments.update(args_dict)
- dh = DataHandler(logger, arguments)
- ts = TSHandler(logger)
- opt = argparse.Namespace(**arguments)
- opt.Model['input_size'] = len(opt.features)
- pre_data = get_data_from_mongo(args_dict)
- feature_scaler, target_scaler = get_scaler_model_from_mongo(arguments)
- pre_x = dh.pre_data_handler(pre_data, feature_scaler, opt)
- ts.get_model(arguments)
- result = ts.predict(pre_x)
- result1 = list(chain.from_iterable(target_scaler.inverse_transform([result.flatten()])))
- pre_data['power_forecast'] = result1[:len(pre_data)]
- pre_data['farm_id'] = 'J00083'
- pre_data['cdq'] = 1
- pre_data['dq'] = 1
- pre_data['zq'] = 1
- pre_data.rename(columns={arguments['col_time']: 'date_time'}, inplace=True)
- pre_data = pre_data[['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']]
- pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
- pre_data.loc[pre_data['power_forecast'] > opt.cap, 'power_forecast'] = opt.cap
- pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
- insert_data_into_mongo(pre_data, arguments)
|