123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902 |
- 2025-05-26 09:10:54,470 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:12:03,996 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:12:46,560 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:13:35,837 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:15:14,753 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:15:43,984 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:18:39,622 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:19:09,611 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:19:09,724 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-26 09:20:01,910 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:20:24,979 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-26 09:20:38,240 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:20:38,353 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-26 09:20:40,863 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:20:43,657 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:20:43,660 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:20:43,772 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
- 2025-05-26 09:20:43,772 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
- 2025-05-26 09:20:44,370 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
- 2025-05-26 09:26:46,082 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:27:10,262 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-26 09:27:34,736 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:28:17,447 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:28:17,451 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:28:17,831 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
- 2025-05-26 09:28:17,832 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
- 2025-05-26 09:35:28,332 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:35:34,654 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 09:36:04,560 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:36:12,678 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 09:41:05,002 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:41:11,193 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 09:41:44,865 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:41:51,449 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 09:46:40,350 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:47:08,760 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 09:47:48,682 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:47:48,799 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 09:47:48,799 - main.py - INFO - 执行脚本路径: E:\compete\app\model\main.py - main
- 2025-05-26 09:47:51,328 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:47:54,140 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:47:54,143 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 09:47:54,265 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
- 2025-05-26 09:47:54,265 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
- 2025-05-26 09:47:54,895 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
- 2025-05-26 10:33:44,175 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:38:28,394 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:38:40,146 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 10:40:16,560 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:40:55,718 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 10:41:24,424 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:43:53,243 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:43:53,532 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:43:53,622 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
- 2025-05-26 10:43:53,622 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
- 2025-05-26 10:45:38,015 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:45:38,143 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 10:45:40,780 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:45:43,622 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:45:43,622 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:45:43,733 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
- 2025-05-26 10:45:43,733 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
- 2025-05-26 10:45:44,346 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
- 2025-05-26 10:48:52,987 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:48:53,102 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 10:48:55,608 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:48:58,429 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:48:58,433 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:48:58,709 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 10:48:58,733 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-26 10:48:58,734 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-26 10:48:58,741 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-26 10:48:58,742 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-26 10:48:58,779 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-26 10:48:58,779 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-26 10:48:58,779 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-26 10:48:58,779 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-26 10:48:58,780 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-26 10:48:58,780 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-26 10:48:59,746 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-26 10:48:59,746 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-26 10:48:59,747 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-26 10:48:59,747 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-26 10:49:12,523 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-26 10:49:12,524 - tf_lstm.py - INFO - 训练集损失函数为:[8.9447e-01 3.1291e-01 9.6900e-02 2.6540e-02 6.4300e-03 1.4200e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-26 10:49:12,524 - tf_lstm.py - INFO - 训练集损失函数为:[9.0170e-01 3.1713e-01 9.9050e-02 2.7600e-02 7.0700e-03 1.9400e-03
- 8.1000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-26 10:49:12,524 - tf_lstm.py - INFO - 验证集损失函数为:[5.0590e-01 1.6401e-01 4.7160e-02 1.1950e-02 2.7200e-03 6.1000e-04
- 1.7000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-26 10:49:12,524 - tf_lstm.py - INFO - 验证集损失函数为:[0.51183 0.16731 0.04894 0.01308 0.00363 0.00145 0.001 0.00092 0.0009
- 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-26 10:49:12,642 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d6a876c6370eb176b800 - insert_trained_model_into_mongo
- 2025-05-26 10:49:12,645 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d6a88a9ccd464b193ac6 - insert_trained_model_into_mongo
- 2025-05-26 10:49:12,664 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d6a88a9ccd464b193ac8 - insert_scaler_model_into_mongo
- 2025-05-26 10:49:12,673 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d6a876c6370eb176b802 - insert_scaler_model_into_mongo
- 2025-05-26 10:49:13,994 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 10:49:14,012 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-26 10:49:14,019 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-26 10:49:14,046 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-26 10:49:14,046 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-26 10:49:14,046 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-26 10:49:14,961 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-26 10:49:14,962 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-26 10:49:26,513 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-26 10:49:26,514 - tf_lstm.py - INFO - 训练集损失函数为:[9.0123e-01 3.1717e-01 9.8830e-02 2.7190e-02 6.5700e-03 1.4100e-03
- 2.7000e-04 5.0000e-05 1.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
- 2025-05-26 10:49:26,514 - tf_lstm.py - INFO - 验证集损失函数为:[5.1155e-01 1.6690e-01 4.8240e-02 1.2230e-02 2.7300e-03 5.4000e-04
- 1.0000e-04 2.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
- 2025-05-26 10:49:26,589 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d6b6407675b5bca4c083 - insert_trained_model_into_mongo
- 2025-05-26 10:49:26,626 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d6b6407675b5bca4c085 - insert_scaler_model_into_mongo
- 2025-05-26 10:55:40,499 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:55:40,612 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 10:55:43,103 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:55:45,883 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:55:45,885 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 10:55:46,085 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-26 10:55:46,086 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 10:55:46,104 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-26 10:55:46,105 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-26 10:55:46,111 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-26 10:55:46,112 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-26 10:55:46,139 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-26 10:55:46,139 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-26 10:55:46,139 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-26 10:55:46,140 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-26 10:55:46,140 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-26 10:55:46,141 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-26 10:55:47,068 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-26 10:55:47,068 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-26 10:55:47,068 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-26 10:55:47,068 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-26 10:55:59,678 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-26 10:55:59,678 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-26 10:55:59,678 - tf_lstm.py - INFO - 训练集损失函数为:[9.0739e-01 3.1934e-01 9.9630e-02 2.7470e-02 6.6900e-03 1.4800e-03
- 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-26 10:55:59,678 - tf_lstm.py - INFO - 训练集损失函数为:[9.0427e-01 3.1717e-01 9.8750e-02 2.7500e-02 7.0700e-03 1.9500e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-26 10:55:59,679 - tf_lstm.py - INFO - 验证集损失函数为:[5.1485e-01 1.6816e-01 4.8690e-02 1.2410e-02 2.8400e-03 6.3000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-26 10:55:59,679 - tf_lstm.py - INFO - 验证集损失函数为:[0.51265 0.16698 0.04873 0.01305 0.00364 0.00146 0.001 0.00092 0.0009
- 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
- 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-26 10:55:59,716 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d83f6162e6249af02c4c - insert_trained_model_into_mongo
- 2025-05-26 10:55:59,716 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d83f7a77586f9dc561a2 - insert_trained_model_into_mongo
- 2025-05-26 10:55:59,723 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d83f7a77586f9dc561a4 - insert_scaler_model_into_mongo
- 2025-05-26 10:55:59,759 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d83f6162e6249af02c4e - insert_scaler_model_into_mongo
- 2025-05-26 10:56:01,061 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 10:56:01,078 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-26 10:56:01,087 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-26 10:56:01,112 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-26 10:56:01,112 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-26 10:56:01,113 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-26 10:56:02,019 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-26 10:56:02,019 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-26 10:56:13,741 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-26 10:56:13,742 - tf_lstm.py - INFO - 训练集损失函数为:[8.9571e-01 3.1434e-01 9.7760e-02 2.6850e-02 6.4800e-03 1.3800e-03
- 2.6000e-04 5.0000e-05 1.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
- 2025-05-26 10:56:13,742 - tf_lstm.py - INFO - 验证集损失函数为:[5.0752e-01 1.6519e-01 4.7670e-02 1.2060e-02 2.6900e-03 5.3000e-04
- 9.0000e-05 2.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
- 2025-05-26 10:56:13,779 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d84d8a59ed23c934ddf3 - insert_trained_model_into_mongo
- 2025-05-26 10:56:13,800 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d84d8a59ed23c934ddf5 - insert_scaler_model_into_mongo
- 2025-05-26 13:17:06,298 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:17:44,916 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:17:45,030 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 13:17:47,565 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:17:50,416 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:17:50,416 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:17:50,620 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:17:50,620 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-26 13:17:50,642 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
- 2025-05-26 13:17:50,643 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 68, in predict
- ts.opt.cap = round(target_scaler.transform(np.array([[self.capacity]]))[0, 0], 2)
- ^^
- NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
- - predict
- 2025-05-26 13:17:50,643 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 68, in predict
- ts.opt.cap = round(target_scaler.transform(np.array([[self.capacity]]))[0, 0], 2)
- ^^
- NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
- - predict
- 2025-05-26 13:17:50,643 - tf_model_pre.py - INFO - lstm预测任务:用了 0.02199840545654297 秒 - predict
- 2025-05-26 13:17:51,800 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:17:51,819 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-26 13:17:51,826 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-26 13:17:51,853 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-26 13:17:51,853 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-26 13:17:51,853 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-26 13:17:52,741 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-26 13:17:52,741 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-26 13:18:04,578 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-26 13:18:04,579 - tf_lstm.py - INFO - 训练集损失函数为:[9.0332e-01 3.1775e-01 9.8980e-02 2.7250e-02 6.6000e-03 1.4200e-03
- 2.7000e-04 5.0000e-05 1.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
- 2025-05-26 13:18:04,579 - tf_lstm.py - INFO - 验证集损失函数为:[5.1259e-01 1.6716e-01 4.8310e-02 1.2260e-02 2.7500e-03 5.5000e-04
- 1.0000e-04 2.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
- 2025-05-26 13:18:04,619 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833f98cf85448d0b0957d89 - insert_trained_model_into_mongo
- 2025-05-26 13:18:04,627 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833f98cf85448d0b0957d8b - insert_scaler_model_into_mongo
- 2025-05-26 13:25:05,271 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:25:05,387 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 13:25:07,918 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:25:10,813 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:25:10,815 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:25:11,026 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:25:11,026 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-26 13:25:11,041 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
- 2025-05-26 13:25:11,041 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
- 2025-05-26 13:25:11,149 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:25:11,150 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp2m0xc3yk.keras - get_keras_model_from_mongo
- 2025-05-26 13:25:11,150 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
- dh.opt.features = json.loads(ts.model_params).get('Model').get('features', ','.join(ts.opt.features)).split(',')
- ^^
- NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
- - predict
- 2025-05-26 13:25:11,151 - tf_model_pre.py - INFO - lstm预测任务:用了 0.12506389617919922 秒 - predict
- 2025-05-26 13:25:11,160 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:25:11,161 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmphs7kb06v.keras - get_keras_model_from_mongo
- 2025-05-26 13:25:11,161 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
- dh.opt.features = json.loads(ts.model_params).get('Model').get('features', ','.join(ts.opt.features)).split(',')
- ^^
- NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
- - predict
- 2025-05-26 13:25:11,161 - tf_model_pre.py - INFO - lstm预测任务:用了 0.13512277603149414 秒 - predict
- 2025-05-26 13:25:12,236 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:25:12,237 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 65, in predict
- self.config['model_table'] = self.config['model_table'] + f'_{pre_type}_'+pre_id
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~
- TypeError: can only concatenate str (not "int") to str
- - predict
- 2025-05-26 13:25:12,237 - tf_model_pre.py - INFO - lstm预测任务:用了 0.0 秒 - predict
- 2025-05-26 13:26:33,193 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:26:33,307 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 13:26:35,857 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:26:38,708 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:26:38,708 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:26:38,917 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:26:38,918 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-26 13:26:38,933 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
- 2025-05-26 13:26:38,933 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
- 2025-05-26 13:26:39,028 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:26:39,029 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpn6uop176.keras - get_keras_model_from_mongo
- 2025-05-26 13:26:39,029 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp14m6bccs.keras - get_keras_model_from_mongo
- 2025-05-26 13:26:39,029 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
- self.dh.opt.features = json.loads(ts.model_params).get('Model').get('features', ','.join(ts.opt.features)).split(',')
- ^^
- NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
- - predict
- 2025-05-26 13:26:39,029 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
- self.dh.opt.features = json.loads(ts.model_params).get('Model').get('features', ','.join(ts.opt.features)).split(',')
- ^^
- NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
- - predict
- 2025-05-26 13:26:39,029 - tf_model_pre.py - INFO - lstm预测任务:用了 0.1105046272277832 秒 - predict
- 2025-05-26 13:26:40,126 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:26:40,141 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:18:04) - get_scaler_model_from_mongo
- 2025-05-26 13:26:40,232 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:26:40,233 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp5gtfn74t.keras - get_keras_model_from_mongo
- 2025-05-26 13:26:40,233 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
- self.dh.opt.features = json.loads(ts.model_params).get('Model').get('features', ','.join(ts.opt.features)).split(',')
- ^^
- NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
- - predict
- 2025-05-26 13:26:40,233 - tf_model_pre.py - INFO - lstm预测任务:用了 0.1076819896697998 秒 - predict
- 2025-05-26 13:27:06,665 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:27:06,783 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 13:27:09,317 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:27:12,186 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:27:12,188 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:27:12,391 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:27:12,391 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-26 13:27:12,407 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
- 2025-05-26 13:27:12,407 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
- 2025-05-26 13:27:12,501 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:27:12,502 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpj73vvrsd.keras - get_keras_model_from_mongo
- 2025-05-26 13:27:12,503 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
- self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- AttributeError: 'NoneType' object has no attribute 'get'
- - predict
- 2025-05-26 13:27:12,503 - tf_model_pre.py - INFO - lstm预测任务:用了 0.11110973358154297 秒 - predict
- 2025-05-26 13:27:12,514 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:27:12,515 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpebd9bcde.keras - get_keras_model_from_mongo
- 2025-05-26 13:27:12,515 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
- self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- AttributeError: 'NoneType' object has no attribute 'get'
- - predict
- 2025-05-26 13:27:12,515 - tf_model_pre.py - INFO - lstm预测任务:用了 0.12341547012329102 秒 - predict
- 2025-05-26 13:27:13,612 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:27:13,641 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:18:04) - get_scaler_model_from_mongo
- 2025-05-26 13:27:13,733 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:27:13,734 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpsjreh657.keras - get_keras_model_from_mongo
- 2025-05-26 13:27:13,734 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
- self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- AttributeError: 'NoneType' object has no attribute 'get'
- - predict
- 2025-05-26 13:27:13,735 - tf_model_pre.py - INFO - lstm预测任务:用了 0.1213693618774414 秒 - predict
- 2025-05-26 13:36:25,334 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:36:25,456 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 13:36:27,979 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:36:30,829 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:36:30,830 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:36:31,037 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:36:31,037 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-26 13:36:31,052 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
- 2025-05-26 13:36:31,052 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
- 2025-05-26 13:36:31,148 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:36:31,149 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpjts3c7tj.keras - get_keras_model_from_mongo
- 2025-05-26 13:36:31,149 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
- self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- AttributeError: 'NoneType' object has no attribute 'get'
- - predict
- 2025-05-26 13:36:31,150 - tf_model_pre.py - INFO - lstm预测任务:用了 0.1134181022644043 秒 - predict
- 2025-05-26 13:36:31,158 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:36:31,159 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpojbt3e8v.keras - get_keras_model_from_mongo
- 2025-05-26 13:36:31,159 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
- self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- AttributeError: 'NoneType' object has no attribute 'get'
- - predict
- 2025-05-26 13:36:31,159 - tf_model_pre.py - INFO - lstm预测任务:用了 0.12242007255554199 秒 - predict
- 2025-05-26 13:36:32,248 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:36:32,286 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:18:04) - get_scaler_model_from_mongo
- 2025-05-26 13:36:32,400 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:36:32,401 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmplfz_aswi.keras - get_keras_model_from_mongo
- 2025-05-26 13:36:32,401 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
- self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- AttributeError: 'NoneType' object has no attribute 'get'
- - predict
- 2025-05-26 13:36:32,401 - tf_model_pre.py - INFO - lstm预测任务:用了 0.1532433032989502 秒 - predict
- 2025-05-26 13:52:57,002 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:52:57,122 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 13:52:59,725 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:53:02,598 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:53:02,599 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:53:02,806 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:53:02,807 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-26 13:53:02,823 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
- 2025-05-26 13:53:02,823 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
- 2025-05-26 13:53:02,924 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:53:02,925 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpzgi7z5fq.keras - get_keras_model_from_mongo
- 2025-05-26 13:53:02,926 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 71, in predict
- self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- AttributeError: 'NoneType' object has no attribute 'get'
- - predict
- 2025-05-26 13:53:02,926 - tf_model_pre.py - INFO - lstm预测任务:用了 0.11925697326660156 秒 - predict
- 2025-05-26 13:53:02,943 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:53:02,944 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpdkqyzzpk.keras - get_keras_model_from_mongo
- 2025-05-26 13:53:02,944 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 71, in predict
- self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- AttributeError: 'NoneType' object has no attribute 'get'
- - predict
- 2025-05-26 13:53:02,945 - tf_model_pre.py - INFO - lstm预测任务:用了 0.13909673690795898 秒 - predict
- 2025-05-26 13:53:04,019 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:53:04,053 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:18:04) - get_scaler_model_from_mongo
- 2025-05-26 13:53:04,154 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:53:04,155 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpr6gss42h.keras - get_keras_model_from_mongo
- 2025-05-26 13:53:04,155 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 71, in predict
- self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- AttributeError: 'NoneType' object has no attribute 'get'
- - predict
- 2025-05-26 13:53:04,155 - tf_model_pre.py - INFO - lstm预测任务:用了 0.13572335243225098 秒 - predict
- 2025-05-26 13:56:37,617 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:56:37,735 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 13:56:40,342 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:56:43,281 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:56:43,282 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:56:43,509 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:56:43,510 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-26 13:56:43,528 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-26 13:56:43,529 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-26 13:56:43,536 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-26 13:56:43,537 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-26 13:56:43,563 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-26 13:56:43,563 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-26 13:56:43,564 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-26 13:56:43,564 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-26 13:56:43,564 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-26 13:56:43,565 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-26 13:56:44,508 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-26 13:56:44,508 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-26 13:56:44,513 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-26 13:56:44,513 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-26 13:56:57,662 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-26 13:56:57,662 - tf_lstm.py - INFO - 训练集损失函数为:[8.9813e-01 3.1547e-01 9.8450e-02 2.7250e-02 6.6700e-03 1.4800e-03
- 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-26 13:56:57,663 - tf_lstm.py - INFO - 验证集损失函数为:[5.0893e-01 1.6605e-01 4.8210e-02 1.2350e-02 2.8400e-03 6.3000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-26 13:56:57,665 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-26 13:56:57,665 - tf_lstm.py - INFO - 训练集损失函数为:[9.0532e-01 3.1862e-01 9.9590e-02 2.7800e-02 7.1400e-03 1.9600e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-26 13:56:57,666 - tf_lstm.py - INFO - 验证集损失函数为:[0.51427 0.16818 0.04926 0.01319 0.00366 0.00146 0.001 0.00091 0.0009
- 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
- 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-26 13:56:57,701 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 683402a901bb2896e076fb63 - insert_trained_model_into_mongo
- 2025-05-26 13:56:57,701 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 683402a9c6b08ce1e2ede8e3 - insert_trained_model_into_mongo
- 2025-05-26 13:56:57,733 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 683402a901bb2896e076fb65 - insert_scaler_model_into_mongo
- 2025-05-26 13:56:57,733 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 683402a9c6b08ce1e2ede8e5 - insert_scaler_model_into_mongo
- 2025-05-26 13:56:59,042 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:56:59,061 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-26 13:56:59,069 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-26 13:56:59,096 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-26 13:56:59,096 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-26 13:56:59,096 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-26 13:57:00,005 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-26 13:57:00,007 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-26 13:57:12,270 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-26 13:57:12,271 - tf_lstm.py - INFO - 训练集损失函数为:[9.0651e-01 3.1862e-01 9.8990e-02 2.7140e-02 6.5400e-03 1.4000e-03
- 2.7000e-04 5.0000e-05 1.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
- 2025-05-26 13:57:12,271 - tf_lstm.py - INFO - 验证集损失函数为:[5.1432e-01 1.6739e-01 4.8210e-02 1.2180e-02 2.7100e-03 5.4000e-04
- 1.0000e-04 2.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
- 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
- 2025-05-26 13:57:12,326 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 683402b8cbbade54034349c6 - insert_trained_model_into_mongo
- 2025-05-26 13:57:12,346 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 683402b8cbbade54034349c8 - insert_scaler_model_into_mongo
- 2025-05-26 13:57:23,209 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:57:23,331 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 13:57:26,015 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:57:28,935 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:57:28,935 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:57:29,145 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:57:29,146 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-26 13:57:29,161 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:56:57) - get_scaler_model_from_mongo
- 2025-05-26 13:57:29,276 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:57:29,277 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp7ueg9fol.keras - get_keras_model_from_mongo
- 2025-05-26 13:57:29,285 - tf_model_pre.py - INFO - 算法启动成功 - predict
- 2025-05-26 13:57:29,286 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 78, in predict
- res = list(chain.from_iterable(target_scaler.inverse_transform([ts.predict(scaled_pre_x).flatten()])))
- ^^
- NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
- - predict
- 2025-05-26 13:57:29,286 - tf_model_pre.py - INFO - lstm预测任务:用了 0.14067649841308594 秒 - predict
- 2025-05-26 13:57:29,289 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:57:29,290 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpojcxs375.keras - get_keras_model_from_mongo
- 2025-05-26 13:57:29,299 - tf_model_pre.py - INFO - 算法启动成功 - predict
- 2025-05-26 13:57:29,299 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 78, in predict
- res = list(chain.from_iterable(target_scaler.inverse_transform([ts.predict(scaled_pre_x).flatten()])))
- ^^
- NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
- - predict
- 2025-05-26 13:57:29,299 - tf_model_pre.py - INFO - lstm预测任务:用了 0.15401625633239746 秒 - predict
- 2025-05-26 13:57:30,396 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:57:30,411 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:57:12) - get_scaler_model_from_mongo
- 2025-05-26 13:57:30,504 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:57:30,505 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpvetfbxsf.keras - get_keras_model_from_mongo
- 2025-05-26 13:57:30,512 - tf_model_pre.py - INFO - 算法启动成功 - predict
- 2025-05-26 13:57:30,512 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
- File "E:\compete\app\predict\tf_model_pre.py", line 78, in predict
- res = list(chain.from_iterable(target_scaler.inverse_transform([ts.predict(scaled_pre_x).flatten()])))
- ^^
- NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
- - predict
- 2025-05-26 13:57:30,512 - tf_model_pre.py - INFO - lstm预测任务:用了 0.11627936363220215 秒 - predict
- 2025-05-26 13:57:51,356 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:57:51,477 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 13:57:54,146 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:57:57,038 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:57:57,038 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 13:57:57,244 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:57:57,247 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-26 13:57:57,261 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:56:57) - get_scaler_model_from_mongo
- 2025-05-26 13:57:57,261 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:56:57) - get_scaler_model_from_mongo
- 2025-05-26 13:57:57,359 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:57:57,360 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpnsr7r1ye.keras - get_keras_model_from_mongo
- 2025-05-26 13:57:57,368 - tf_model_pre.py - INFO - 算法启动成功 - predict
- 2025-05-26 13:57:57,379 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:57:57,380 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpyxtqz1xn.keras - get_keras_model_from_mongo
- 2025-05-26 13:57:57,388 - tf_model_pre.py - INFO - 算法启动成功 - predict
- 2025-05-26 13:57:57,522 - tf_lstm.py - INFO - 执行预测方法 - predict
- 2025-05-26 13:57:57,526 - tf_model_pre.py - INFO - 算法正常结束 - predict
- 2025-05-26 13:57:57,526 - tf_model_pre.py - INFO - lstm预测任务:用了 0.28109288215637207 秒 - predict
- 2025-05-26 13:57:57,539 - tf_lstm.py - INFO - 执行预测方法 - predict
- 2025-05-26 13:57:57,543 - tf_model_pre.py - INFO - 算法正常结束 - predict
- 2025-05-26 13:57:57,543 - tf_model_pre.py - INFO - lstm预测任务:用了 0.2960829734802246 秒 - predict
- 2025-05-26 13:57:58,485 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 13:57:58,500 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:57:12) - get_scaler_model_from_mongo
- 2025-05-26 13:57:58,610 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 13:57:58,611 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpvn_zur3w.keras - get_keras_model_from_mongo
- 2025-05-26 13:57:58,619 - tf_model_pre.py - INFO - 算法启动成功 - predict
- 2025-05-26 13:57:58,770 - tf_lstm.py - INFO - 执行预测方法 - predict
- 2025-05-26 13:57:58,774 - tf_model_pre.py - INFO - 算法正常结束 - predict
- 2025-05-26 13:57:58,774 - tf_model_pre.py - INFO - lstm预测任务:用了 0.2896087169647217 秒 - predict
- 2025-05-26 14:06:09,692 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 14:06:09,811 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
- 2025-05-26 14:06:12,373 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 14:06:15,287 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 14:06:15,288 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-26 14:06:15,504 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 14:06:15,506 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-26 14:06:15,520 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:56:57) - get_scaler_model_from_mongo
- 2025-05-26 14:06:15,520 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:56:57) - get_scaler_model_from_mongo
- 2025-05-26 14:06:15,615 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 14:06:15,616 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp_up9ip43.keras - get_keras_model_from_mongo
- 2025-05-26 14:06:15,627 - tf_model_pre.py - INFO - 算法启动成功 - predict
- 2025-05-26 14:06:15,637 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 14:06:15,638 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp_kwqh_p6.keras - get_keras_model_from_mongo
- 2025-05-26 14:06:15,646 - tf_model_pre.py - INFO - 算法启动成功 - predict
- 2025-05-26 14:06:15,781 - tf_lstm.py - INFO - 执行预测方法 - predict
- 2025-05-26 14:06:15,785 - tf_model_pre.py - INFO - 算法正常结束 - predict
- 2025-05-26 14:06:15,785 - tf_model_pre.py - INFO - lstm预测任务:用了 0.2813594341278076 秒 - predict
- 2025-05-26 14:06:15,803 - tf_lstm.py - INFO - 执行预测方法 - predict
- 2025-05-26 14:06:15,806 - tf_model_pre.py - INFO - 算法正常结束 - predict
- 2025-05-26 14:06:15,807 - tf_model_pre.py - INFO - lstm预测任务:用了 0.30091023445129395 秒 - predict
- 2025-05-26 14:06:16,751 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-26 14:06:16,766 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:57:12) - get_scaler_model_from_mongo
- 2025-05-26 14:06:16,868 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
- 2025-05-26 14:06:16,869 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpvak840q3.keras - get_keras_model_from_mongo
- 2025-05-26 14:06:16,877 - tf_model_pre.py - INFO - 算法启动成功 - predict
- 2025-05-26 14:06:17,026 - tf_lstm.py - INFO - 执行预测方法 - predict
- 2025-05-26 14:06:17,029 - tf_model_pre.py - INFO - 算法正常结束 - predict
- 2025-05-26 14:06:17,029 - tf_model_pre.py - INFO - lstm预测任务:用了 0.27792811393737793 秒 - predict
|