south-forecast.2025-05-26.0.log 82 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902
  1. 2025-05-26 09:10:54,470 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  2. - _tfmw_add_deprecation_warning
  3. 2025-05-26 09:12:03,996 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  4. - _tfmw_add_deprecation_warning
  5. 2025-05-26 09:12:46,560 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  6. - _tfmw_add_deprecation_warning
  7. 2025-05-26 09:13:35,837 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  8. - _tfmw_add_deprecation_warning
  9. 2025-05-26 09:15:14,753 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  10. - _tfmw_add_deprecation_warning
  11. 2025-05-26 09:15:43,984 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  12. - _tfmw_add_deprecation_warning
  13. 2025-05-26 09:18:39,622 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  14. - _tfmw_add_deprecation_warning
  15. 2025-05-26 09:19:09,611 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  16. - _tfmw_add_deprecation_warning
  17. 2025-05-26 09:19:09,724 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  18. 2025-05-26 09:20:01,910 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  19. - _tfmw_add_deprecation_warning
  20. 2025-05-26 09:20:24,979 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  21. 2025-05-26 09:20:38,240 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  22. - _tfmw_add_deprecation_warning
  23. 2025-05-26 09:20:38,353 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  24. 2025-05-26 09:20:40,863 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  25. - _tfmw_add_deprecation_warning
  26. 2025-05-26 09:20:43,657 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  27. - _tfmw_add_deprecation_warning
  28. 2025-05-26 09:20:43,660 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  29. - _tfmw_add_deprecation_warning
  30. 2025-05-26 09:20:43,772 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
  31. 2025-05-26 09:20:43,772 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
  32. 2025-05-26 09:20:44,370 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
  33. 2025-05-26 09:26:46,082 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  34. - _tfmw_add_deprecation_warning
  35. 2025-05-26 09:27:10,262 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  36. 2025-05-26 09:27:34,736 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  37. - _tfmw_add_deprecation_warning
  38. 2025-05-26 09:28:17,447 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  39. - _tfmw_add_deprecation_warning
  40. 2025-05-26 09:28:17,451 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  41. - _tfmw_add_deprecation_warning
  42. 2025-05-26 09:28:17,831 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
  43. 2025-05-26 09:28:17,832 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
  44. 2025-05-26 09:35:28,332 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  45. - _tfmw_add_deprecation_warning
  46. 2025-05-26 09:35:34,654 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  47. 2025-05-26 09:36:04,560 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  48. - _tfmw_add_deprecation_warning
  49. 2025-05-26 09:36:12,678 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  50. 2025-05-26 09:41:05,002 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  51. - _tfmw_add_deprecation_warning
  52. 2025-05-26 09:41:11,193 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  53. 2025-05-26 09:41:44,865 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  54. - _tfmw_add_deprecation_warning
  55. 2025-05-26 09:41:51,449 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  56. 2025-05-26 09:46:40,350 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  57. - _tfmw_add_deprecation_warning
  58. 2025-05-26 09:47:08,760 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  59. 2025-05-26 09:47:48,682 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  60. - _tfmw_add_deprecation_warning
  61. 2025-05-26 09:47:48,799 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  62. 2025-05-26 09:47:48,799 - main.py - INFO - 执行脚本路径: E:\compete\app\model\main.py - main
  63. 2025-05-26 09:47:51,328 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  64. - _tfmw_add_deprecation_warning
  65. 2025-05-26 09:47:54,140 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  66. - _tfmw_add_deprecation_warning
  67. 2025-05-26 09:47:54,143 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  68. - _tfmw_add_deprecation_warning
  69. 2025-05-26 09:47:54,265 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
  70. 2025-05-26 09:47:54,265 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
  71. 2025-05-26 09:47:54,895 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
  72. 2025-05-26 10:33:44,175 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  73. - _tfmw_add_deprecation_warning
  74. 2025-05-26 10:38:28,394 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  75. - _tfmw_add_deprecation_warning
  76. 2025-05-26 10:38:40,146 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  77. 2025-05-26 10:40:16,560 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  78. - _tfmw_add_deprecation_warning
  79. 2025-05-26 10:40:55,718 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  80. 2025-05-26 10:41:24,424 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  81. - _tfmw_add_deprecation_warning
  82. 2025-05-26 10:43:53,243 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  83. - _tfmw_add_deprecation_warning
  84. 2025-05-26 10:43:53,532 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  85. - _tfmw_add_deprecation_warning
  86. 2025-05-26 10:43:53,622 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
  87. 2025-05-26 10:43:53,622 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
  88. 2025-05-26 10:45:38,015 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  89. - _tfmw_add_deprecation_warning
  90. 2025-05-26 10:45:38,143 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  91. 2025-05-26 10:45:40,780 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  92. - _tfmw_add_deprecation_warning
  93. 2025-05-26 10:45:43,622 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  94. - _tfmw_add_deprecation_warning
  95. 2025-05-26 10:45:43,622 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  96. - _tfmw_add_deprecation_warning
  97. 2025-05-26 10:45:43,733 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
  98. 2025-05-26 10:45:43,733 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
  99. 2025-05-26 10:45:44,346 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
  100. 2025-05-26 10:48:52,987 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  101. - _tfmw_add_deprecation_warning
  102. 2025-05-26 10:48:53,102 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  103. 2025-05-26 10:48:55,608 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  104. - _tfmw_add_deprecation_warning
  105. 2025-05-26 10:48:58,429 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  106. - _tfmw_add_deprecation_warning
  107. 2025-05-26 10:48:58,433 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  108. - _tfmw_add_deprecation_warning
  109. 2025-05-26 10:48:58,709 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  110. 2025-05-26 10:48:58,733 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  111. 2025-05-26 10:48:58,734 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  112. 2025-05-26 10:48:58,741 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  113. 2025-05-26 10:48:58,742 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  114. 2025-05-26 10:48:58,779 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  115. 2025-05-26 10:48:58,779 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  116. 2025-05-26 10:48:58,779 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  117. 2025-05-26 10:48:58,779 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  118. 2025-05-26 10:48:58,780 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  119. 2025-05-26 10:48:58,780 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  120. 2025-05-26 10:48:59,746 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  121. 2025-05-26 10:48:59,746 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  122. 2025-05-26 10:48:59,747 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  123. 2025-05-26 10:48:59,747 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  124. 2025-05-26 10:49:12,523 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  125. 2025-05-26 10:49:12,524 - tf_lstm.py - INFO - 训练集损失函数为:[8.9447e-01 3.1291e-01 9.6900e-02 2.6540e-02 6.4300e-03 1.4200e-03
  126. 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  127. 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  128. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  129. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  130. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  131. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  132. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  133. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  134. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  135. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  136. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  137. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  138. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  139. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  140. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  141. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  142. 2025-05-26 10:49:12,524 - tf_lstm.py - INFO - 训练集损失函数为:[9.0170e-01 3.1713e-01 9.9050e-02 2.7600e-02 7.0700e-03 1.9400e-03
  143. 8.1000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  144. 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  145. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  146. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  147. 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  148. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  149. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  150. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  151. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  152. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  153. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  154. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  155. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  156. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  157. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  158. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  159. 2025-05-26 10:49:12,524 - tf_lstm.py - INFO - 验证集损失函数为:[5.0590e-01 1.6401e-01 4.7160e-02 1.1950e-02 2.7200e-03 6.1000e-04
  160. 1.7000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  161. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  162. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  163. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  164. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  165. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  166. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  167. 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  168. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  169. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  170. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  171. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  172. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  173. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  174. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  175. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  176. 2025-05-26 10:49:12,524 - tf_lstm.py - INFO - 验证集损失函数为:[0.51183 0.16731 0.04894 0.01308 0.00363 0.00145 0.001 0.00092 0.0009
  177. 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
  178. 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
  179. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
  180. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  181. 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  182. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  183. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082
  184. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  185. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  186. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  187. 0.00082] - training
  188. 2025-05-26 10:49:12,642 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d6a876c6370eb176b800 - insert_trained_model_into_mongo
  189. 2025-05-26 10:49:12,645 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d6a88a9ccd464b193ac6 - insert_trained_model_into_mongo
  190. 2025-05-26 10:49:12,664 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d6a88a9ccd464b193ac8 - insert_scaler_model_into_mongo
  191. 2025-05-26 10:49:12,673 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d6a876c6370eb176b802 - insert_scaler_model_into_mongo
  192. 2025-05-26 10:49:13,994 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  193. 2025-05-26 10:49:14,012 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  194. 2025-05-26 10:49:14,019 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  195. 2025-05-26 10:49:14,046 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  196. 2025-05-26 10:49:14,046 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  197. 2025-05-26 10:49:14,046 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  198. 2025-05-26 10:49:14,961 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  199. 2025-05-26 10:49:14,962 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  200. 2025-05-26 10:49:26,513 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  201. 2025-05-26 10:49:26,514 - tf_lstm.py - INFO - 训练集损失函数为:[9.0123e-01 3.1717e-01 9.8830e-02 2.7190e-02 6.5700e-03 1.4100e-03
  202. 2.7000e-04 5.0000e-05 1.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00
  203. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  204. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  205. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  206. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  207. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  208. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  209. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  210. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  211. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  212. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  213. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  214. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  215. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  216. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  217. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
  218. 2025-05-26 10:49:26,514 - tf_lstm.py - INFO - 验证集损失函数为:[5.1155e-01 1.6690e-01 4.8240e-02 1.2230e-02 2.7300e-03 5.4000e-04
  219. 1.0000e-04 2.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  220. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  221. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  222. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  223. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  224. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  225. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  226. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  227. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  228. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  229. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  230. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  231. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  232. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  233. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  234. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
  235. 2025-05-26 10:49:26,589 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d6b6407675b5bca4c083 - insert_trained_model_into_mongo
  236. 2025-05-26 10:49:26,626 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d6b6407675b5bca4c085 - insert_scaler_model_into_mongo
  237. 2025-05-26 10:55:40,499 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  238. - _tfmw_add_deprecation_warning
  239. 2025-05-26 10:55:40,612 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  240. 2025-05-26 10:55:43,103 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  241. - _tfmw_add_deprecation_warning
  242. 2025-05-26 10:55:45,883 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  243. - _tfmw_add_deprecation_warning
  244. 2025-05-26 10:55:45,885 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  245. - _tfmw_add_deprecation_warning
  246. 2025-05-26 10:55:46,085 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  247. 2025-05-26 10:55:46,086 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  248. 2025-05-26 10:55:46,104 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  249. 2025-05-26 10:55:46,105 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  250. 2025-05-26 10:55:46,111 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  251. 2025-05-26 10:55:46,112 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  252. 2025-05-26 10:55:46,139 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  253. 2025-05-26 10:55:46,139 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  254. 2025-05-26 10:55:46,139 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  255. 2025-05-26 10:55:46,140 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  256. 2025-05-26 10:55:46,140 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  257. 2025-05-26 10:55:46,141 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  258. 2025-05-26 10:55:47,068 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  259. 2025-05-26 10:55:47,068 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  260. 2025-05-26 10:55:47,068 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  261. 2025-05-26 10:55:47,068 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  262. 2025-05-26 10:55:59,678 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  263. 2025-05-26 10:55:59,678 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  264. 2025-05-26 10:55:59,678 - tf_lstm.py - INFO - 训练集损失函数为:[9.0739e-01 3.1934e-01 9.9630e-02 2.7470e-02 6.6900e-03 1.4800e-03
  265. 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  266. 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  267. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  268. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  269. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  270. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  271. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  272. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  273. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  274. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  275. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  276. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  277. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  278. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  279. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  280. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  281. 2025-05-26 10:55:59,678 - tf_lstm.py - INFO - 训练集损失函数为:[9.0427e-01 3.1717e-01 9.8750e-02 2.7500e-02 7.0700e-03 1.9500e-03
  282. 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  283. 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  284. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  285. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  286. 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  287. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  288. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  289. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  290. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  291. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  292. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  293. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  294. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  295. 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  296. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  297. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  298. 2025-05-26 10:55:59,679 - tf_lstm.py - INFO - 验证集损失函数为:[5.1485e-01 1.6816e-01 4.8690e-02 1.2410e-02 2.8400e-03 6.3000e-04
  299. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  300. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  301. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  302. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  303. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  304. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  305. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  306. 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  307. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  308. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  309. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  310. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  311. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  312. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  313. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  314. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  315. 2025-05-26 10:55:59,679 - tf_lstm.py - INFO - 验证集损失函数为:[0.51265 0.16698 0.04873 0.01305 0.00364 0.00146 0.001 0.00092 0.0009
  316. 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
  317. 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
  318. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
  319. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  320. 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
  321. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  322. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  323. 0.00083 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  324. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  325. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  326. 0.00082] - training
  327. 2025-05-26 10:55:59,716 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d83f6162e6249af02c4c - insert_trained_model_into_mongo
  328. 2025-05-26 10:55:59,716 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d83f7a77586f9dc561a2 - insert_trained_model_into_mongo
  329. 2025-05-26 10:55:59,723 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d83f7a77586f9dc561a4 - insert_scaler_model_into_mongo
  330. 2025-05-26 10:55:59,759 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d83f6162e6249af02c4e - insert_scaler_model_into_mongo
  331. 2025-05-26 10:56:01,061 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  332. 2025-05-26 10:56:01,078 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  333. 2025-05-26 10:56:01,087 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  334. 2025-05-26 10:56:01,112 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  335. 2025-05-26 10:56:01,112 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  336. 2025-05-26 10:56:01,113 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  337. 2025-05-26 10:56:02,019 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  338. 2025-05-26 10:56:02,019 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  339. 2025-05-26 10:56:13,741 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  340. 2025-05-26 10:56:13,742 - tf_lstm.py - INFO - 训练集损失函数为:[8.9571e-01 3.1434e-01 9.7760e-02 2.6850e-02 6.4800e-03 1.3800e-03
  341. 2.6000e-04 5.0000e-05 1.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00
  342. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  343. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  344. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  345. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  346. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  347. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  348. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  349. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  350. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  351. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  352. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  353. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  354. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  355. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  356. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
  357. 2025-05-26 10:56:13,742 - tf_lstm.py - INFO - 验证集损失函数为:[5.0752e-01 1.6519e-01 4.7670e-02 1.2060e-02 2.6900e-03 5.3000e-04
  358. 9.0000e-05 2.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  359. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  360. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  361. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  362. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  363. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  364. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  365. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  366. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  367. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  368. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  369. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  370. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  371. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  372. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  373. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
  374. 2025-05-26 10:56:13,779 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d84d8a59ed23c934ddf3 - insert_trained_model_into_mongo
  375. 2025-05-26 10:56:13,800 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d84d8a59ed23c934ddf5 - insert_scaler_model_into_mongo
  376. 2025-05-26 13:17:06,298 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  377. - _tfmw_add_deprecation_warning
  378. 2025-05-26 13:17:44,916 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  379. - _tfmw_add_deprecation_warning
  380. 2025-05-26 13:17:45,030 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  381. 2025-05-26 13:17:47,565 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  382. - _tfmw_add_deprecation_warning
  383. 2025-05-26 13:17:50,416 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  384. - _tfmw_add_deprecation_warning
  385. 2025-05-26 13:17:50,416 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  386. - _tfmw_add_deprecation_warning
  387. 2025-05-26 13:17:50,620 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
  388. 2025-05-26 13:17:50,620 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
  389. 2025-05-26 13:17:50,642 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
  390. 2025-05-26 13:17:50,643 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  391. File "E:\compete\app\predict\tf_model_pre.py", line 68, in predict
  392. ts.opt.cap = round(target_scaler.transform(np.array([[self.capacity]]))[0, 0], 2)
  393. ^^
  394. NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
  395. - predict
  396. 2025-05-26 13:17:50,643 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  397. File "E:\compete\app\predict\tf_model_pre.py", line 68, in predict
  398. ts.opt.cap = round(target_scaler.transform(np.array([[self.capacity]]))[0, 0], 2)
  399. ^^
  400. NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
  401. - predict
  402. 2025-05-26 13:17:50,643 - tf_model_pre.py - INFO - lstm预测任务:用了 0.02199840545654297 秒 - predict
  403. 2025-05-26 13:17:51,800 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  404. 2025-05-26 13:17:51,819 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  405. 2025-05-26 13:17:51,826 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  406. 2025-05-26 13:17:51,853 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  407. 2025-05-26 13:17:51,853 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  408. 2025-05-26 13:17:51,853 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  409. 2025-05-26 13:17:52,741 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  410. 2025-05-26 13:17:52,741 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  411. 2025-05-26 13:18:04,578 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  412. 2025-05-26 13:18:04,579 - tf_lstm.py - INFO - 训练集损失函数为:[9.0332e-01 3.1775e-01 9.8980e-02 2.7250e-02 6.6000e-03 1.4200e-03
  413. 2.7000e-04 5.0000e-05 1.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00
  414. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  415. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  416. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  417. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  418. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  419. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  420. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  421. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  422. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  423. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  424. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  425. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  426. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  427. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  428. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
  429. 2025-05-26 13:18:04,579 - tf_lstm.py - INFO - 验证集损失函数为:[5.1259e-01 1.6716e-01 4.8310e-02 1.2260e-02 2.7500e-03 5.5000e-04
  430. 1.0000e-04 2.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  431. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  432. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  433. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  434. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  435. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  436. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  437. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  438. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  439. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  440. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  441. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  442. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  443. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  444. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  445. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
  446. 2025-05-26 13:18:04,619 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833f98cf85448d0b0957d89 - insert_trained_model_into_mongo
  447. 2025-05-26 13:18:04,627 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833f98cf85448d0b0957d8b - insert_scaler_model_into_mongo
  448. 2025-05-26 13:25:05,271 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  449. - _tfmw_add_deprecation_warning
  450. 2025-05-26 13:25:05,387 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  451. 2025-05-26 13:25:07,918 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  452. - _tfmw_add_deprecation_warning
  453. 2025-05-26 13:25:10,813 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  454. - _tfmw_add_deprecation_warning
  455. 2025-05-26 13:25:10,815 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  456. - _tfmw_add_deprecation_warning
  457. 2025-05-26 13:25:11,026 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
  458. 2025-05-26 13:25:11,026 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
  459. 2025-05-26 13:25:11,041 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
  460. 2025-05-26 13:25:11,041 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
  461. 2025-05-26 13:25:11,149 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  462. 2025-05-26 13:25:11,150 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp2m0xc3yk.keras - get_keras_model_from_mongo
  463. 2025-05-26 13:25:11,150 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  464. File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
  465. dh.opt.features = json.loads(ts.model_params).get('Model').get('features', ','.join(ts.opt.features)).split(',')
  466. ^^
  467. NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
  468. - predict
  469. 2025-05-26 13:25:11,151 - tf_model_pre.py - INFO - lstm预测任务:用了 0.12506389617919922 秒 - predict
  470. 2025-05-26 13:25:11,160 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  471. 2025-05-26 13:25:11,161 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmphs7kb06v.keras - get_keras_model_from_mongo
  472. 2025-05-26 13:25:11,161 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  473. File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
  474. dh.opt.features = json.loads(ts.model_params).get('Model').get('features', ','.join(ts.opt.features)).split(',')
  475. ^^
  476. NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
  477. - predict
  478. 2025-05-26 13:25:11,161 - tf_model_pre.py - INFO - lstm预测任务:用了 0.13512277603149414 秒 - predict
  479. 2025-05-26 13:25:12,236 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
  480. 2025-05-26 13:25:12,237 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  481. File "E:\compete\app\predict\tf_model_pre.py", line 65, in predict
  482. self.config['model_table'] = self.config['model_table'] + f'_{pre_type}_'+pre_id
  483. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~
  484. TypeError: can only concatenate str (not "int") to str
  485. - predict
  486. 2025-05-26 13:25:12,237 - tf_model_pre.py - INFO - lstm预测任务:用了 0.0 秒 - predict
  487. 2025-05-26 13:26:33,193 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  488. - _tfmw_add_deprecation_warning
  489. 2025-05-26 13:26:33,307 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  490. 2025-05-26 13:26:35,857 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  491. - _tfmw_add_deprecation_warning
  492. 2025-05-26 13:26:38,708 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  493. - _tfmw_add_deprecation_warning
  494. 2025-05-26 13:26:38,708 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  495. - _tfmw_add_deprecation_warning
  496. 2025-05-26 13:26:38,917 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
  497. 2025-05-26 13:26:38,918 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
  498. 2025-05-26 13:26:38,933 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
  499. 2025-05-26 13:26:38,933 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
  500. 2025-05-26 13:26:39,028 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  501. 2025-05-26 13:26:39,029 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpn6uop176.keras - get_keras_model_from_mongo
  502. 2025-05-26 13:26:39,029 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp14m6bccs.keras - get_keras_model_from_mongo
  503. 2025-05-26 13:26:39,029 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  504. File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
  505. self.dh.opt.features = json.loads(ts.model_params).get('Model').get('features', ','.join(ts.opt.features)).split(',')
  506. ^^
  507. NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
  508. - predict
  509. 2025-05-26 13:26:39,029 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  510. File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
  511. self.dh.opt.features = json.loads(ts.model_params).get('Model').get('features', ','.join(ts.opt.features)).split(',')
  512. ^^
  513. NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
  514. - predict
  515. 2025-05-26 13:26:39,029 - tf_model_pre.py - INFO - lstm预测任务:用了 0.1105046272277832 秒 - predict
  516. 2025-05-26 13:26:40,126 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
  517. 2025-05-26 13:26:40,141 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:18:04) - get_scaler_model_from_mongo
  518. 2025-05-26 13:26:40,232 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  519. 2025-05-26 13:26:40,233 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp5gtfn74t.keras - get_keras_model_from_mongo
  520. 2025-05-26 13:26:40,233 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  521. File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
  522. self.dh.opt.features = json.loads(ts.model_params).get('Model').get('features', ','.join(ts.opt.features)).split(',')
  523. ^^
  524. NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
  525. - predict
  526. 2025-05-26 13:26:40,233 - tf_model_pre.py - INFO - lstm预测任务:用了 0.1076819896697998 秒 - predict
  527. 2025-05-26 13:27:06,665 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  528. - _tfmw_add_deprecation_warning
  529. 2025-05-26 13:27:06,783 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  530. 2025-05-26 13:27:09,317 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  531. - _tfmw_add_deprecation_warning
  532. 2025-05-26 13:27:12,186 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  533. - _tfmw_add_deprecation_warning
  534. 2025-05-26 13:27:12,188 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  535. - _tfmw_add_deprecation_warning
  536. 2025-05-26 13:27:12,391 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
  537. 2025-05-26 13:27:12,391 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
  538. 2025-05-26 13:27:12,407 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
  539. 2025-05-26 13:27:12,407 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
  540. 2025-05-26 13:27:12,501 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  541. 2025-05-26 13:27:12,502 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpj73vvrsd.keras - get_keras_model_from_mongo
  542. 2025-05-26 13:27:12,503 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  543. File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
  544. self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
  545. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  546. AttributeError: 'NoneType' object has no attribute 'get'
  547. - predict
  548. 2025-05-26 13:27:12,503 - tf_model_pre.py - INFO - lstm预测任务:用了 0.11110973358154297 秒 - predict
  549. 2025-05-26 13:27:12,514 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  550. 2025-05-26 13:27:12,515 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpebd9bcde.keras - get_keras_model_from_mongo
  551. 2025-05-26 13:27:12,515 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  552. File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
  553. self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
  554. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  555. AttributeError: 'NoneType' object has no attribute 'get'
  556. - predict
  557. 2025-05-26 13:27:12,515 - tf_model_pre.py - INFO - lstm预测任务:用了 0.12341547012329102 秒 - predict
  558. 2025-05-26 13:27:13,612 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
  559. 2025-05-26 13:27:13,641 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:18:04) - get_scaler_model_from_mongo
  560. 2025-05-26 13:27:13,733 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  561. 2025-05-26 13:27:13,734 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpsjreh657.keras - get_keras_model_from_mongo
  562. 2025-05-26 13:27:13,734 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  563. File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
  564. self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
  565. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  566. AttributeError: 'NoneType' object has no attribute 'get'
  567. - predict
  568. 2025-05-26 13:27:13,735 - tf_model_pre.py - INFO - lstm预测任务:用了 0.1213693618774414 秒 - predict
  569. 2025-05-26 13:36:25,334 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  570. - _tfmw_add_deprecation_warning
  571. 2025-05-26 13:36:25,456 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  572. 2025-05-26 13:36:27,979 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  573. - _tfmw_add_deprecation_warning
  574. 2025-05-26 13:36:30,829 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  575. - _tfmw_add_deprecation_warning
  576. 2025-05-26 13:36:30,830 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  577. - _tfmw_add_deprecation_warning
  578. 2025-05-26 13:36:31,037 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
  579. 2025-05-26 13:36:31,037 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
  580. 2025-05-26 13:36:31,052 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
  581. 2025-05-26 13:36:31,052 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
  582. 2025-05-26 13:36:31,148 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  583. 2025-05-26 13:36:31,149 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpjts3c7tj.keras - get_keras_model_from_mongo
  584. 2025-05-26 13:36:31,149 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  585. File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
  586. self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
  587. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  588. AttributeError: 'NoneType' object has no attribute 'get'
  589. - predict
  590. 2025-05-26 13:36:31,150 - tf_model_pre.py - INFO - lstm预测任务:用了 0.1134181022644043 秒 - predict
  591. 2025-05-26 13:36:31,158 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  592. 2025-05-26 13:36:31,159 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpojbt3e8v.keras - get_keras_model_from_mongo
  593. 2025-05-26 13:36:31,159 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  594. File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
  595. self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
  596. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  597. AttributeError: 'NoneType' object has no attribute 'get'
  598. - predict
  599. 2025-05-26 13:36:31,159 - tf_model_pre.py - INFO - lstm预测任务:用了 0.12242007255554199 秒 - predict
  600. 2025-05-26 13:36:32,248 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
  601. 2025-05-26 13:36:32,286 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:18:04) - get_scaler_model_from_mongo
  602. 2025-05-26 13:36:32,400 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  603. 2025-05-26 13:36:32,401 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmplfz_aswi.keras - get_keras_model_from_mongo
  604. 2025-05-26 13:36:32,401 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  605. File "E:\compete\app\predict\tf_model_pre.py", line 70, in predict
  606. self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
  607. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  608. AttributeError: 'NoneType' object has no attribute 'get'
  609. - predict
  610. 2025-05-26 13:36:32,401 - tf_model_pre.py - INFO - lstm预测任务:用了 0.1532433032989502 秒 - predict
  611. 2025-05-26 13:52:57,002 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  612. - _tfmw_add_deprecation_warning
  613. 2025-05-26 13:52:57,122 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  614. 2025-05-26 13:52:59,725 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  615. - _tfmw_add_deprecation_warning
  616. 2025-05-26 13:53:02,598 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  617. - _tfmw_add_deprecation_warning
  618. 2025-05-26 13:53:02,599 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  619. - _tfmw_add_deprecation_warning
  620. 2025-05-26 13:53:02,806 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
  621. 2025-05-26 13:53:02,807 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
  622. 2025-05-26 13:53:02,823 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
  623. 2025-05-26 13:53:02,823 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 10:55:59) - get_scaler_model_from_mongo
  624. 2025-05-26 13:53:02,924 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  625. 2025-05-26 13:53:02,925 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpzgi7z5fq.keras - get_keras_model_from_mongo
  626. 2025-05-26 13:53:02,926 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  627. File "E:\compete\app\predict\tf_model_pre.py", line 71, in predict
  628. self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
  629. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  630. AttributeError: 'NoneType' object has no attribute 'get'
  631. - predict
  632. 2025-05-26 13:53:02,926 - tf_model_pre.py - INFO - lstm预测任务:用了 0.11925697326660156 秒 - predict
  633. 2025-05-26 13:53:02,943 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  634. 2025-05-26 13:53:02,944 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpdkqyzzpk.keras - get_keras_model_from_mongo
  635. 2025-05-26 13:53:02,944 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  636. File "E:\compete\app\predict\tf_model_pre.py", line 71, in predict
  637. self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
  638. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  639. AttributeError: 'NoneType' object has no attribute 'get'
  640. - predict
  641. 2025-05-26 13:53:02,945 - tf_model_pre.py - INFO - lstm预测任务:用了 0.13909673690795898 秒 - predict
  642. 2025-05-26 13:53:04,019 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
  643. 2025-05-26 13:53:04,053 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:18:04) - get_scaler_model_from_mongo
  644. 2025-05-26 13:53:04,154 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  645. 2025-05-26 13:53:04,155 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpr6gss42h.keras - get_keras_model_from_mongo
  646. 2025-05-26 13:53:04,155 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  647. File "E:\compete\app\predict\tf_model_pre.py", line 71, in predict
  648. self.dh.opt.features = json.loads(self.ts.model_params).get('Model').get('features', ','.join(self.ts.opt.features)).split(',')
  649. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  650. AttributeError: 'NoneType' object has no attribute 'get'
  651. - predict
  652. 2025-05-26 13:53:04,155 - tf_model_pre.py - INFO - lstm预测任务:用了 0.13572335243225098 秒 - predict
  653. 2025-05-26 13:56:37,617 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  654. - _tfmw_add_deprecation_warning
  655. 2025-05-26 13:56:37,735 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  656. 2025-05-26 13:56:40,342 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  657. - _tfmw_add_deprecation_warning
  658. 2025-05-26 13:56:43,281 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  659. - _tfmw_add_deprecation_warning
  660. 2025-05-26 13:56:43,282 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  661. - _tfmw_add_deprecation_warning
  662. 2025-05-26 13:56:43,509 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  663. 2025-05-26 13:56:43,510 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  664. 2025-05-26 13:56:43,528 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  665. 2025-05-26 13:56:43,529 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  666. 2025-05-26 13:56:43,536 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  667. 2025-05-26 13:56:43,537 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  668. 2025-05-26 13:56:43,563 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  669. 2025-05-26 13:56:43,563 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  670. 2025-05-26 13:56:43,564 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  671. 2025-05-26 13:56:43,564 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  672. 2025-05-26 13:56:43,564 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  673. 2025-05-26 13:56:43,565 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  674. 2025-05-26 13:56:44,508 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  675. 2025-05-26 13:56:44,508 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  676. 2025-05-26 13:56:44,513 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  677. 2025-05-26 13:56:44,513 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  678. 2025-05-26 13:56:57,662 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  679. 2025-05-26 13:56:57,662 - tf_lstm.py - INFO - 训练集损失函数为:[8.9813e-01 3.1547e-01 9.8450e-02 2.7250e-02 6.6700e-03 1.4800e-03
  680. 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  681. 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  682. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  683. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  684. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  685. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  686. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  687. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  688. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  689. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  690. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  691. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  692. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  693. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  694. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  695. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  696. 2025-05-26 13:56:57,663 - tf_lstm.py - INFO - 验证集损失函数为:[5.0893e-01 1.6605e-01 4.8210e-02 1.2350e-02 2.8400e-03 6.3000e-04
  697. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  698. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  699. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  700. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  701. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  702. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  703. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  704. 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  705. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  706. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  707. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  708. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  709. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  710. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  711. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  712. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  713. 2025-05-26 13:56:57,665 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  714. 2025-05-26 13:56:57,665 - tf_lstm.py - INFO - 训练集损失函数为:[9.0532e-01 3.1862e-01 9.9590e-02 2.7800e-02 7.1400e-03 1.9600e-03
  715. 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  716. 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  717. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  718. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  719. 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  720. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  721. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  722. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  723. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  724. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  725. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  726. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  727. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  728. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  729. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  730. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  731. 2025-05-26 13:56:57,666 - tf_lstm.py - INFO - 验证集损失函数为:[0.51427 0.16818 0.04926 0.01319 0.00366 0.00146 0.001 0.00091 0.0009
  732. 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
  733. 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
  734. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
  735. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  736. 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
  737. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  738. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  739. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  740. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  741. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  742. 0.00082] - training
  743. 2025-05-26 13:56:57,701 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 683402a901bb2896e076fb63 - insert_trained_model_into_mongo
  744. 2025-05-26 13:56:57,701 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 683402a9c6b08ce1e2ede8e3 - insert_trained_model_into_mongo
  745. 2025-05-26 13:56:57,733 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 683402a901bb2896e076fb65 - insert_scaler_model_into_mongo
  746. 2025-05-26 13:56:57,733 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 683402a9c6b08ce1e2ede8e5 - insert_scaler_model_into_mongo
  747. 2025-05-26 13:56:59,042 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  748. 2025-05-26 13:56:59,061 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  749. 2025-05-26 13:56:59,069 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  750. 2025-05-26 13:56:59,096 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  751. 2025-05-26 13:56:59,096 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  752. 2025-05-26 13:56:59,096 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  753. 2025-05-26 13:57:00,005 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  754. 2025-05-26 13:57:00,007 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  755. 2025-05-26 13:57:12,270 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  756. 2025-05-26 13:57:12,271 - tf_lstm.py - INFO - 训练集损失函数为:[9.0651e-01 3.1862e-01 9.8990e-02 2.7140e-02 6.5400e-03 1.4000e-03
  757. 2.7000e-04 5.0000e-05 1.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00
  758. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  759. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  760. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  761. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  762. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  763. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  764. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  765. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  766. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  767. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  768. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  769. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  770. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  771. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  772. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
  773. 2025-05-26 13:57:12,271 - tf_lstm.py - INFO - 验证集损失函数为:[5.1432e-01 1.6739e-01 4.8210e-02 1.2180e-02 2.7100e-03 5.4000e-04
  774. 1.0000e-04 2.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  775. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  776. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  777. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  778. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  779. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  780. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  781. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  782. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  783. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  784. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  785. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  786. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  787. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  788. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  789. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
  790. 2025-05-26 13:57:12,326 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 683402b8cbbade54034349c6 - insert_trained_model_into_mongo
  791. 2025-05-26 13:57:12,346 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 683402b8cbbade54034349c8 - insert_scaler_model_into_mongo
  792. 2025-05-26 13:57:23,209 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  793. - _tfmw_add_deprecation_warning
  794. 2025-05-26 13:57:23,331 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  795. 2025-05-26 13:57:26,015 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  796. - _tfmw_add_deprecation_warning
  797. 2025-05-26 13:57:28,935 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  798. - _tfmw_add_deprecation_warning
  799. 2025-05-26 13:57:28,935 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  800. - _tfmw_add_deprecation_warning
  801. 2025-05-26 13:57:29,145 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
  802. 2025-05-26 13:57:29,146 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
  803. 2025-05-26 13:57:29,161 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:56:57) - get_scaler_model_from_mongo
  804. 2025-05-26 13:57:29,276 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  805. 2025-05-26 13:57:29,277 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp7ueg9fol.keras - get_keras_model_from_mongo
  806. 2025-05-26 13:57:29,285 - tf_model_pre.py - INFO - 算法启动成功 - predict
  807. 2025-05-26 13:57:29,286 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  808. File "E:\compete\app\predict\tf_model_pre.py", line 78, in predict
  809. res = list(chain.from_iterable(target_scaler.inverse_transform([ts.predict(scaled_pre_x).flatten()])))
  810. ^^
  811. NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
  812. - predict
  813. 2025-05-26 13:57:29,286 - tf_model_pre.py - INFO - lstm预测任务:用了 0.14067649841308594 秒 - predict
  814. 2025-05-26 13:57:29,289 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  815. 2025-05-26 13:57:29,290 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpojcxs375.keras - get_keras_model_from_mongo
  816. 2025-05-26 13:57:29,299 - tf_model_pre.py - INFO - 算法启动成功 - predict
  817. 2025-05-26 13:57:29,299 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  818. File "E:\compete\app\predict\tf_model_pre.py", line 78, in predict
  819. res = list(chain.from_iterable(target_scaler.inverse_transform([ts.predict(scaled_pre_x).flatten()])))
  820. ^^
  821. NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
  822. - predict
  823. 2025-05-26 13:57:29,299 - tf_model_pre.py - INFO - lstm预测任务:用了 0.15401625633239746 秒 - predict
  824. 2025-05-26 13:57:30,396 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
  825. 2025-05-26 13:57:30,411 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:57:12) - get_scaler_model_from_mongo
  826. 2025-05-26 13:57:30,504 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  827. 2025-05-26 13:57:30,505 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpvetfbxsf.keras - get_keras_model_from_mongo
  828. 2025-05-26 13:57:30,512 - tf_model_pre.py - INFO - 算法启动成功 - predict
  829. 2025-05-26 13:57:30,512 - tf_model_pre.py - INFO - 算法状态异常:Traceback (most recent call last):
  830. File "E:\compete\app\predict\tf_model_pre.py", line 78, in predict
  831. res = list(chain.from_iterable(target_scaler.inverse_transform([ts.predict(scaled_pre_x).flatten()])))
  832. ^^
  833. NameError: name 'ts' is not defined. Did you mean: 'self.ts'?
  834. - predict
  835. 2025-05-26 13:57:30,512 - tf_model_pre.py - INFO - lstm预测任务:用了 0.11627936363220215 秒 - predict
  836. 2025-05-26 13:57:51,356 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  837. - _tfmw_add_deprecation_warning
  838. 2025-05-26 13:57:51,477 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  839. 2025-05-26 13:57:54,146 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  840. - _tfmw_add_deprecation_warning
  841. 2025-05-26 13:57:57,038 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  842. - _tfmw_add_deprecation_warning
  843. 2025-05-26 13:57:57,038 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  844. - _tfmw_add_deprecation_warning
  845. 2025-05-26 13:57:57,244 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
  846. 2025-05-26 13:57:57,247 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
  847. 2025-05-26 13:57:57,261 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:56:57) - get_scaler_model_from_mongo
  848. 2025-05-26 13:57:57,261 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:56:57) - get_scaler_model_from_mongo
  849. 2025-05-26 13:57:57,359 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  850. 2025-05-26 13:57:57,360 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpnsr7r1ye.keras - get_keras_model_from_mongo
  851. 2025-05-26 13:57:57,368 - tf_model_pre.py - INFO - 算法启动成功 - predict
  852. 2025-05-26 13:57:57,379 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  853. 2025-05-26 13:57:57,380 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpyxtqz1xn.keras - get_keras_model_from_mongo
  854. 2025-05-26 13:57:57,388 - tf_model_pre.py - INFO - 算法启动成功 - predict
  855. 2025-05-26 13:57:57,522 - tf_lstm.py - INFO - 执行预测方法 - predict
  856. 2025-05-26 13:57:57,526 - tf_model_pre.py - INFO - 算法正常结束 - predict
  857. 2025-05-26 13:57:57,526 - tf_model_pre.py - INFO - lstm预测任务:用了 0.28109288215637207 秒 - predict
  858. 2025-05-26 13:57:57,539 - tf_lstm.py - INFO - 执行预测方法 - predict
  859. 2025-05-26 13:57:57,543 - tf_model_pre.py - INFO - 算法正常结束 - predict
  860. 2025-05-26 13:57:57,543 - tf_model_pre.py - INFO - lstm预测任务:用了 0.2960829734802246 秒 - predict
  861. 2025-05-26 13:57:58,485 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
  862. 2025-05-26 13:57:58,500 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:57:12) - get_scaler_model_from_mongo
  863. 2025-05-26 13:57:58,610 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  864. 2025-05-26 13:57:58,611 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpvn_zur3w.keras - get_keras_model_from_mongo
  865. 2025-05-26 13:57:58,619 - tf_model_pre.py - INFO - 算法启动成功 - predict
  866. 2025-05-26 13:57:58,770 - tf_lstm.py - INFO - 执行预测方法 - predict
  867. 2025-05-26 13:57:58,774 - tf_model_pre.py - INFO - 算法正常结束 - predict
  868. 2025-05-26 13:57:58,774 - tf_model_pre.py - INFO - lstm预测任务:用了 0.2896087169647217 秒 - predict
  869. 2025-05-26 14:06:09,692 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  870. - _tfmw_add_deprecation_warning
  871. 2025-05-26 14:06:09,811 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  872. 2025-05-26 14:06:12,373 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  873. - _tfmw_add_deprecation_warning
  874. 2025-05-26 14:06:15,287 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  875. - _tfmw_add_deprecation_warning
  876. 2025-05-26 14:06:15,288 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  877. - _tfmw_add_deprecation_warning
  878. 2025-05-26 14:06:15,504 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
  879. 2025-05-26 14:06:15,506 - tf_model_pre.py - INFO - GPU 2 allocated - _setup_resources
  880. 2025-05-26 14:06:15,520 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:56:57) - get_scaler_model_from_mongo
  881. 2025-05-26 14:06:15,520 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:56:57) - get_scaler_model_from_mongo
  882. 2025-05-26 14:06:15,615 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  883. 2025-05-26 14:06:15,616 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp_up9ip43.keras - get_keras_model_from_mongo
  884. 2025-05-26 14:06:15,627 - tf_model_pre.py - INFO - 算法启动成功 - predict
  885. 2025-05-26 14:06:15,637 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  886. 2025-05-26 14:06:15,638 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp_kwqh_p6.keras - get_keras_model_from_mongo
  887. 2025-05-26 14:06:15,646 - tf_model_pre.py - INFO - 算法启动成功 - predict
  888. 2025-05-26 14:06:15,781 - tf_lstm.py - INFO - 执行预测方法 - predict
  889. 2025-05-26 14:06:15,785 - tf_model_pre.py - INFO - 算法正常结束 - predict
  890. 2025-05-26 14:06:15,785 - tf_model_pre.py - INFO - lstm预测任务:用了 0.2813594341278076 秒 - predict
  891. 2025-05-26 14:06:15,803 - tf_lstm.py - INFO - 执行预测方法 - predict
  892. 2025-05-26 14:06:15,806 - tf_model_pre.py - INFO - 算法正常结束 - predict
  893. 2025-05-26 14:06:15,807 - tf_model_pre.py - INFO - lstm预测任务:用了 0.30091023445129395 秒 - predict
  894. 2025-05-26 14:06:16,751 - tf_model_pre.py - INFO - GPU 1 allocated - _setup_resources
  895. 2025-05-26 14:06:16,766 - dbmg.py - INFO - ✅ 成功加载 lstm 的缩放器 (版本时间: 2025-05-26 13:57:12) - get_scaler_model_from_mongo
  896. 2025-05-26 14:06:16,868 - dbmg.py - INFO - lstm 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  897. 2025-05-26 14:06:16,869 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpvak840q3.keras - get_keras_model_from_mongo
  898. 2025-05-26 14:06:16,877 - tf_model_pre.py - INFO - 算法启动成功 - predict
  899. 2025-05-26 14:06:17,026 - tf_lstm.py - INFO - 执行预测方法 - predict
  900. 2025-05-26 14:06:17,029 - tf_model_pre.py - INFO - 算法正常结束 - predict
  901. 2025-05-26 14:06:17,029 - tf_model_pre.py - INFO - lstm预测任务:用了 0.27792811393737793 秒 - predict