south-forecast.2025-05-26.0.log 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. 2025-05-26 09:10:54,470 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  2. - _tfmw_add_deprecation_warning
  3. 2025-05-26 09:12:03,996 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  4. - _tfmw_add_deprecation_warning
  5. 2025-05-26 09:12:46,560 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  6. - _tfmw_add_deprecation_warning
  7. 2025-05-26 09:13:35,837 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  8. - _tfmw_add_deprecation_warning
  9. 2025-05-26 09:15:14,753 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  10. - _tfmw_add_deprecation_warning
  11. 2025-05-26 09:15:43,984 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  12. - _tfmw_add_deprecation_warning
  13. 2025-05-26 09:18:39,622 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  14. - _tfmw_add_deprecation_warning
  15. 2025-05-26 09:19:09,611 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  16. - _tfmw_add_deprecation_warning
  17. 2025-05-26 09:19:09,724 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  18. 2025-05-26 09:20:01,910 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  19. - _tfmw_add_deprecation_warning
  20. 2025-05-26 09:20:24,979 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  21. 2025-05-26 09:20:38,240 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  22. - _tfmw_add_deprecation_warning
  23. 2025-05-26 09:20:38,353 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  24. 2025-05-26 09:20:40,863 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  25. - _tfmw_add_deprecation_warning
  26. 2025-05-26 09:20:43,657 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  27. - _tfmw_add_deprecation_warning
  28. 2025-05-26 09:20:43,660 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  29. - _tfmw_add_deprecation_warning
  30. 2025-05-26 09:20:43,772 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
  31. 2025-05-26 09:20:43,772 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
  32. 2025-05-26 09:20:44,370 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
  33. 2025-05-26 09:26:46,082 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  34. - _tfmw_add_deprecation_warning
  35. 2025-05-26 09:27:10,262 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
  36. 2025-05-26 09:27:34,736 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  37. - _tfmw_add_deprecation_warning
  38. 2025-05-26 09:28:17,447 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  39. - _tfmw_add_deprecation_warning
  40. 2025-05-26 09:28:17,451 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  41. - _tfmw_add_deprecation_warning
  42. 2025-05-26 09:28:17,831 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
  43. 2025-05-26 09:28:17,832 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
  44. 2025-05-26 09:35:28,332 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  45. - _tfmw_add_deprecation_warning
  46. 2025-05-26 09:35:34,654 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  47. 2025-05-26 09:36:04,560 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  48. - _tfmw_add_deprecation_warning
  49. 2025-05-26 09:36:12,678 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  50. 2025-05-26 09:41:05,002 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  51. - _tfmw_add_deprecation_warning
  52. 2025-05-26 09:41:11,193 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  53. 2025-05-26 09:41:44,865 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  54. - _tfmw_add_deprecation_warning
  55. 2025-05-26 09:41:51,449 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  56. 2025-05-26 09:46:40,350 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  57. - _tfmw_add_deprecation_warning
  58. 2025-05-26 09:47:08,760 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  59. 2025-05-26 09:47:48,682 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  60. - _tfmw_add_deprecation_warning
  61. 2025-05-26 09:47:48,799 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  62. 2025-05-26 09:47:48,799 - main.py - INFO - 执行脚本路径: E:\compete\app\model\main.py - main
  63. 2025-05-26 09:47:51,328 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  64. - _tfmw_add_deprecation_warning
  65. 2025-05-26 09:47:54,140 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  66. - _tfmw_add_deprecation_warning
  67. 2025-05-26 09:47:54,143 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  68. - _tfmw_add_deprecation_warning
  69. 2025-05-26 09:47:54,265 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
  70. 2025-05-26 09:47:54,265 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
  71. 2025-05-26 09:47:54,895 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
  72. 2025-05-26 10:33:44,175 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  73. - _tfmw_add_deprecation_warning
  74. 2025-05-26 10:38:28,394 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  75. - _tfmw_add_deprecation_warning
  76. 2025-05-26 10:38:40,146 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  77. 2025-05-26 10:40:16,560 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  78. - _tfmw_add_deprecation_warning
  79. 2025-05-26 10:40:55,718 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  80. 2025-05-26 10:41:24,424 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  81. - _tfmw_add_deprecation_warning
  82. 2025-05-26 10:43:53,243 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  83. - _tfmw_add_deprecation_warning
  84. 2025-05-26 10:43:53,532 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  85. - _tfmw_add_deprecation_warning
  86. 2025-05-26 10:43:53,622 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
  87. 2025-05-26 10:43:53,622 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
  88. 2025-05-26 10:45:38,015 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  89. - _tfmw_add_deprecation_warning
  90. 2025-05-26 10:45:38,143 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  91. 2025-05-26 10:45:40,780 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  92. - _tfmw_add_deprecation_warning
  93. 2025-05-26 10:45:43,622 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  94. - _tfmw_add_deprecation_warning
  95. 2025-05-26 10:45:43,622 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  96. - _tfmw_add_deprecation_warning
  97. 2025-05-26 10:45:43,733 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
  98. 2025-05-26 10:45:43,733 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
  99. 2025-05-26 10:45:44,346 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
  100. 2025-05-26 10:48:52,987 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  101. - _tfmw_add_deprecation_warning
  102. 2025-05-26 10:48:53,102 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  103. 2025-05-26 10:48:55,608 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  104. - _tfmw_add_deprecation_warning
  105. 2025-05-26 10:48:58,429 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  106. - _tfmw_add_deprecation_warning
  107. 2025-05-26 10:48:58,433 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  108. - _tfmw_add_deprecation_warning
  109. 2025-05-26 10:48:58,709 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  110. 2025-05-26 10:48:58,733 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  111. 2025-05-26 10:48:58,734 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  112. 2025-05-26 10:48:58,741 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  113. 2025-05-26 10:48:58,742 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  114. 2025-05-26 10:48:58,779 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  115. 2025-05-26 10:48:58,779 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  116. 2025-05-26 10:48:58,779 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  117. 2025-05-26 10:48:58,779 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  118. 2025-05-26 10:48:58,780 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  119. 2025-05-26 10:48:58,780 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  120. 2025-05-26 10:48:59,746 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  121. 2025-05-26 10:48:59,746 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  122. 2025-05-26 10:48:59,747 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  123. 2025-05-26 10:48:59,747 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  124. 2025-05-26 10:49:12,523 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  125. 2025-05-26 10:49:12,524 - tf_lstm.py - INFO - 训练集损失函数为:[8.9447e-01 3.1291e-01 9.6900e-02 2.6540e-02 6.4300e-03 1.4200e-03
  126. 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  127. 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  128. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  129. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  130. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  131. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  132. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  133. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  134. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  135. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  136. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  137. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  138. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  139. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  140. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  141. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  142. 2025-05-26 10:49:12,524 - tf_lstm.py - INFO - 训练集损失函数为:[9.0170e-01 3.1713e-01 9.9050e-02 2.7600e-02 7.0700e-03 1.9400e-03
  143. 8.1000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  144. 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  145. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  146. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  147. 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  148. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  149. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  150. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  151. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  152. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  153. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  154. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  155. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  156. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  157. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  158. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  159. 2025-05-26 10:49:12,524 - tf_lstm.py - INFO - 验证集损失函数为:[5.0590e-01 1.6401e-01 4.7160e-02 1.1950e-02 2.7200e-03 6.1000e-04
  160. 1.7000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  161. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  162. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  163. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  164. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  165. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  166. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  167. 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  168. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  169. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  170. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  171. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  172. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  173. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  174. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  175. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  176. 2025-05-26 10:49:12,524 - tf_lstm.py - INFO - 验证集损失函数为:[0.51183 0.16731 0.04894 0.01308 0.00363 0.00145 0.001 0.00092 0.0009
  177. 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
  178. 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
  179. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
  180. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  181. 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  182. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  183. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082
  184. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  185. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  186. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  187. 0.00082] - training
  188. 2025-05-26 10:49:12,642 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d6a876c6370eb176b800 - insert_trained_model_into_mongo
  189. 2025-05-26 10:49:12,645 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d6a88a9ccd464b193ac6 - insert_trained_model_into_mongo
  190. 2025-05-26 10:49:12,664 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d6a88a9ccd464b193ac8 - insert_scaler_model_into_mongo
  191. 2025-05-26 10:49:12,673 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d6a876c6370eb176b802 - insert_scaler_model_into_mongo
  192. 2025-05-26 10:49:13,994 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  193. 2025-05-26 10:49:14,012 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  194. 2025-05-26 10:49:14,019 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  195. 2025-05-26 10:49:14,046 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  196. 2025-05-26 10:49:14,046 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  197. 2025-05-26 10:49:14,046 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  198. 2025-05-26 10:49:14,961 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  199. 2025-05-26 10:49:14,962 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  200. 2025-05-26 10:49:26,513 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  201. 2025-05-26 10:49:26,514 - tf_lstm.py - INFO - 训练集损失函数为:[9.0123e-01 3.1717e-01 9.8830e-02 2.7190e-02 6.5700e-03 1.4100e-03
  202. 2.7000e-04 5.0000e-05 1.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00
  203. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  204. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  205. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  206. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  207. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  208. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  209. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  210. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  211. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  212. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  213. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  214. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  215. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  216. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  217. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
  218. 2025-05-26 10:49:26,514 - tf_lstm.py - INFO - 验证集损失函数为:[5.1155e-01 1.6690e-01 4.8240e-02 1.2230e-02 2.7300e-03 5.4000e-04
  219. 1.0000e-04 2.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  220. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  221. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  222. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  223. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  224. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  225. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  226. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  227. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  228. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  229. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  230. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  231. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  232. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  233. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  234. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
  235. 2025-05-26 10:49:26,589 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d6b6407675b5bca4c083 - insert_trained_model_into_mongo
  236. 2025-05-26 10:49:26,626 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d6b6407675b5bca4c085 - insert_scaler_model_into_mongo
  237. 2025-05-26 10:55:40,499 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  238. - _tfmw_add_deprecation_warning
  239. 2025-05-26 10:55:40,612 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
  240. 2025-05-26 10:55:43,103 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  241. - _tfmw_add_deprecation_warning
  242. 2025-05-26 10:55:45,883 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  243. - _tfmw_add_deprecation_warning
  244. 2025-05-26 10:55:45,885 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  245. - _tfmw_add_deprecation_warning
  246. 2025-05-26 10:55:46,085 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
  247. 2025-05-26 10:55:46,086 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  248. 2025-05-26 10:55:46,104 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  249. 2025-05-26 10:55:46,105 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  250. 2025-05-26 10:55:46,111 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
  251. 2025-05-26 10:55:46,112 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  252. 2025-05-26 10:55:46,139 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  253. 2025-05-26 10:55:46,139 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  254. 2025-05-26 10:55:46,139 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  255. 2025-05-26 10:55:46,140 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  256. 2025-05-26 10:55:46,140 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  257. 2025-05-26 10:55:46,141 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  258. 2025-05-26 10:55:47,068 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  259. 2025-05-26 10:55:47,068 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  260. 2025-05-26 10:55:47,068 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  261. 2025-05-26 10:55:47,068 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  262. 2025-05-26 10:55:59,678 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  263. 2025-05-26 10:55:59,678 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  264. 2025-05-26 10:55:59,678 - tf_lstm.py - INFO - 训练集损失函数为:[9.0739e-01 3.1934e-01 9.9630e-02 2.7470e-02 6.6900e-03 1.4800e-03
  265. 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
  266. 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  267. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  268. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  269. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  270. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  271. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  272. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  273. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  274. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  275. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  276. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  277. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  278. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  279. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
  280. 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
  281. 2025-05-26 10:55:59,678 - tf_lstm.py - INFO - 训练集损失函数为:[9.0427e-01 3.1717e-01 9.8750e-02 2.7500e-02 7.0700e-03 1.9500e-03
  282. 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
  283. 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  284. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  285. 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
  286. 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  287. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  288. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  289. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  290. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  291. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  292. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  293. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  294. 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
  295. 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  296. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
  297. 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
  298. 2025-05-26 10:55:59,679 - tf_lstm.py - INFO - 验证集损失函数为:[5.1485e-01 1.6816e-01 4.8690e-02 1.2410e-02 2.8400e-03 6.3000e-04
  299. 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  300. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  301. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  302. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  303. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  304. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  305. 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
  306. 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  307. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  308. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  309. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  310. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  311. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  312. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  313. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
  314. 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
  315. 2025-05-26 10:55:59,679 - tf_lstm.py - INFO - 验证集损失函数为:[0.51265 0.16698 0.04873 0.01305 0.00364 0.00146 0.001 0.00092 0.0009
  316. 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
  317. 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
  318. 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
  319. 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
  320. 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
  321. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  322. 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
  323. 0.00083 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  324. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  325. 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
  326. 0.00082] - training
  327. 2025-05-26 10:55:59,716 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d83f6162e6249af02c4c - insert_trained_model_into_mongo
  328. 2025-05-26 10:55:59,716 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d83f7a77586f9dc561a2 - insert_trained_model_into_mongo
  329. 2025-05-26 10:55:59,723 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d83f7a77586f9dc561a4 - insert_scaler_model_into_mongo
  330. 2025-05-26 10:55:59,759 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d83f6162e6249af02c4e - insert_scaler_model_into_mongo
  331. 2025-05-26 10:56:01,061 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
  332. 2025-05-26 10:56:01,078 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  333. 2025-05-26 10:56:01,087 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
  334. 2025-05-26 10:56:01,112 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
  335. 2025-05-26 10:56:01,112 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
  336. 2025-05-26 10:56:01,113 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
  337. 2025-05-26 10:56:02,019 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
  338. 2025-05-26 10:56:02,019 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  339. 2025-05-26 10:56:13,741 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
  340. 2025-05-26 10:56:13,742 - tf_lstm.py - INFO - 训练集损失函数为:[8.9571e-01 3.1434e-01 9.7760e-02 2.6850e-02 6.4800e-03 1.3800e-03
  341. 2.6000e-04 5.0000e-05 1.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00
  342. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  343. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  344. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  345. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  346. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  347. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  348. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  349. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  350. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  351. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  352. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  353. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  354. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  355. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  356. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
  357. 2025-05-26 10:56:13,742 - tf_lstm.py - INFO - 验证集损失函数为:[5.0752e-01 1.6519e-01 4.7670e-02 1.2060e-02 2.6900e-03 5.3000e-04
  358. 9.0000e-05 2.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  359. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  360. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  361. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  362. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  363. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  364. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  365. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  366. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  367. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  368. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  369. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  370. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  371. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  372. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
  373. 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
  374. 2025-05-26 10:56:13,779 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d84d8a59ed23c934ddf3 - insert_trained_model_into_mongo
  375. 2025-05-26 10:56:13,800 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d84d8a59ed23c934ddf5 - insert_scaler_model_into_mongo