1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951 |
- 2025-05-22 11:00:08,282 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:00:08,613 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 11:00:11,212 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:00:14,107 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:00:14,110 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:00:14,392 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 11:00:14,401 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 11:00:14,415 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 11:00:14,419 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 11:00:14,423 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 11:00:14,427 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 11:00:14,463 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 11:00:14,463 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 11:00:14,463 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 11:00:14,463 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 11:00:14,464 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 11:00:14,464 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 11:00:15,484 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 11:00:15,484 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 11:00:15,485 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 11:00:15,485 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 11:00:28,458 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 11:00:28,458 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 11:00:28,458 - tf_lstm.py - INFO - 训练集损失函数为:[9.0069e-01 3.1528e-01 9.7720e-02 2.6780e-02 6.4900e-03 1.4300e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 11:00:28,458 - tf_lstm.py - INFO - 训练集损失函数为:[9.0124e-01 3.1763e-01 9.9520e-02 2.7860e-02 7.1800e-03 1.9800e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 11:00:28,459 - tf_lstm.py - INFO - 验证集损失函数为:[5.0957e-01 1.6535e-01 4.7580e-02 1.2060e-02 2.7500e-03 6.1000e-04
- 1.7000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 11:00:28,459 - tf_lstm.py - INFO - 验证集损失函数为:[0.51216 0.16791 0.0493 0.01325 0.00369 0.00147 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 11:00:28,518 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682e934cf784a6b4a7b99c0b - insert_trained_model_into_mongo
- 2025-05-22 11:00:28,528 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682e934c6e3c6f67919b8a61 - insert_trained_model_into_mongo
- 2025-05-22 11:00:28,553 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682e934c6e3c6f67919b8a63 - insert_scaler_model_into_mongo
- 2025-05-22 11:00:28,559 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682e934cf784a6b4a7b99c0d - insert_scaler_model_into_mongo
- 2025-05-22 11:00:29,840 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
- 2025-05-22 11:07:40,679 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:07:44,165 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 11:08:09,067 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:13:00,030 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:13:00,144 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 11:13:02,718 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:13:05,631 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:13:05,632 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:13:05,855 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 11:13:05,855 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 11:13:05,873 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 11:13:05,873 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 11:13:05,881 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 11:13:05,881 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 11:13:05,909 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 11:13:05,909 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 11:13:05,909 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 11:13:05,909 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 11:13:05,909 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 11:13:05,910 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 11:13:06,849 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 11:13:06,850 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 11:13:06,872 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 11:13:06,872 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 11:13:19,649 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 11:13:19,649 - tf_lstm.py - INFO - 训练集损失函数为:[9.0405e-01 3.1641e-01 9.7950e-02 2.6820e-02 6.5000e-03 1.4300e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 11:13:19,649 - tf_lstm.py - INFO - 验证集损失函数为:[5.1157e-01 1.6582e-01 4.7650e-02 1.2070e-02 2.7500e-03 6.1000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 11:13:19,659 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 11:13:19,660 - tf_lstm.py - INFO - 训练集损失函数为:[9.0396e-01 3.1831e-01 9.9550e-02 2.7800e-02 7.1400e-03 1.9600e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 11:13:19,660 - tf_lstm.py - INFO - 验证集损失函数为:[0.51355 0.16811 0.04924 0.01319 0.00367 0.00146 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 11:13:19,705 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682e964ff0d6786d32a727ec - insert_trained_model_into_mongo
- 2025-05-22 11:13:19,709 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682e964f3e4b222ab549997c - insert_trained_model_into_mongo
- 2025-05-22 11:13:19,728 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682e964ff0d6786d32a727ee - insert_scaler_model_into_mongo
- 2025-05-22 11:13:19,733 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682e964f3e4b222ab549997e - insert_scaler_model_into_mongo
- 2025-05-22 11:13:21,022 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
- 2025-05-22 13:06:09,682 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:06:09,939 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 13:06:12,715 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:06:15,661 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:06:15,662 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:06:15,932 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 13:06:15,932 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 13:06:15,959 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:06:15,959 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:06:15,967 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:06:15,968 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:06:16,004 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:06:16,004 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:06:16,005 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:06:16,005 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:06:16,005 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:06:16,005 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:06:17,007 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:06:17,007 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:06:17,007 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:06:17,007 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:06:29,989 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:06:29,990 - tf_lstm.py - INFO - 训练集损失函数为:[9.0225e-01 3.1749e-01 9.9030e-02 2.7310e-02 6.6500e-03 1.4700e-03
- 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 13:06:29,990 - tf_lstm.py - INFO - 验证集损失函数为:[0.50924 0.16612 0.04859 0.013 0.00362 0.00146 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 13:06:29,990 - tf_lstm.py - INFO - 验证集损失函数为:[5.1195e-01 1.6715e-01 4.8400e-02 1.2340e-02 2.8200e-03 6.2000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 13:06:30,043 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb0d6741733b69380e30e - insert_trained_model_into_mongo
- 2025-05-22 13:06:30,044 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb0d63e5e1c931e47042e - insert_trained_model_into_mongo
- 2025-05-22 13:06:30,052 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb0d6741733b69380e310 - insert_scaler_model_into_mongo
- 2025-05-22 13:06:30,052 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb0d63e5e1c931e470430 - insert_scaler_model_into_mongo
- 2025-05-22 13:06:31,384 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
- 2025-05-22 13:21:28,302 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:21:32,961 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 13:21:55,981 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:22:19,846 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:22:19,965 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:22:32,298 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 13:22:32,299 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 13:22:49,121 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:22:49,123 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:22:59,511 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:22:59,519 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:22:59,558 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:22:59,558 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:22:59,560 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:22:59,565 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:22:59,565 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:22:59,567 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:23:14,175 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:23:14,175 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:23:14,176 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:23:14,177 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:23:52,897 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:23:52,897 - tf_lstm.py - INFO - 训练集损失函数为:[9.0598e-01 3.1883e-01 9.9640e-02 2.7810e-02 7.1500e-03 1.9700e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 13:23:52,898 - tf_lstm.py - INFO - 验证集损失函数为:[0.51461 0.16825 0.04928 0.0132 0.00367 0.00147 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 13:23:52,944 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:23:52,945 - tf_lstm.py - INFO - 训练集损失函数为:[9.0190e-01 3.1699e-01 9.8690e-02 2.7170e-02 6.6100e-03 1.4600e-03
- 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 13:23:52,945 - tf_lstm.py - INFO - 验证集损失函数为:[5.1143e-01 1.6671e-01 4.8180e-02 1.2270e-02 2.8100e-03 6.3000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 13:23:58,957 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb4ee215b380c4e277f3d - insert_trained_model_into_mongo
- 2025-05-22 13:23:58,962 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb4eef0381e0011af450d - insert_trained_model_into_mongo
- 2025-05-22 13:23:58,970 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb4ee215b380c4e277f3f - insert_scaler_model_into_mongo
- 2025-05-22 13:23:58,987 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb4eef0381e0011af450f - insert_scaler_model_into_mongo
- 2025-05-22 13:25:06,867 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:25:10,017 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 13:25:33,151 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:25:56,908 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:25:56,915 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:31:51,198 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:31:51,314 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 13:31:53,876 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:31:56,769 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:31:56,769 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:31:56,973 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 13:31:56,974 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 13:31:56,992 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:31:56,993 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:31:57,000 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:31:57,001 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:31:57,027 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:31:57,027 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:31:57,028 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:31:57,028 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:31:57,029 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:31:57,029 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:31:57,948 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:31:57,949 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:31:57,957 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:31:57,958 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:32:10,777 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:32:10,778 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:32:10,778 - tf_lstm.py - INFO - 训练集损失函数为:[8.9570e-01 3.1407e-01 9.7760e-02 2.7200e-02 6.9900e-03 1.9300e-03
- 8.1000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 13:32:10,778 - tf_lstm.py - INFO - 训练集损失函数为:[9.0424e-01 3.1647e-01 9.8080e-02 2.6880e-02 6.5100e-03 1.4300e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 13:32:10,778 - tf_lstm.py - INFO - 验证集损失函数为:[0.5076 0.16537 0.04823 0.01291 0.0036 0.00145 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 13:32:10,778 - tf_lstm.py - INFO - 验证集损失函数为:[5.1157e-01 1.6595e-01 4.7750e-02 1.2100e-02 2.7500e-03 6.1000e-04
- 1.7000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 13:32:10,816 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb6daed827ab3f0037eb2 - insert_trained_model_into_mongo
- 2025-05-22 13:32:10,816 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb6dad7c91141fbffba57 - insert_trained_model_into_mongo
- 2025-05-22 13:32:10,848 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb6dad7c91141fbffba59 - insert_scaler_model_into_mongo
- 2025-05-22 13:32:10,863 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb6daed827ab3f0037eb4 - insert_scaler_model_into_mongo
- 2025-05-22 13:32:12,164 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
- 2025-05-22 13:36:17,718 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:36:17,835 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 13:36:20,536 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:36:23,520 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:36:23,524 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:36:23,730 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 13:36:23,730 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 13:36:23,748 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:36:23,748 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:36:23,757 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:36:23,757 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:36:23,784 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:36:23,784 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:36:23,785 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:36:23,786 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:36:23,786 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:36:23,787 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:36:24,750 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:36:24,751 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:36:24,755 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:36:24,755 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:36:37,674 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:36:37,674 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:36:37,675 - tf_lstm.py - INFO - 训练集损失函数为:[9.0215e-01 3.1682e-01 9.8480e-02 2.7050e-02 6.5600e-03 1.4400e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 13:36:37,675 - tf_lstm.py - INFO - 验证集损失函数为:[0.51142 0.16709 0.04888 0.01311 0.00366 0.00147 0.00102 0.00093 0.00091
- 0.0009 0.0009 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087
- 0.00087 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 13:36:37,675 - tf_lstm.py - INFO - 验证集损失函数为:[5.1143e-01 1.6646e-01 4.8020e-02 1.2190e-02 2.7800e-03 6.2000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 13:36:37,713 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb7e5627b101c684d84af - insert_trained_model_into_mongo
- 2025-05-22 13:36:37,720 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb7e5627b101c684d84b1 - insert_scaler_model_into_mongo
- 2025-05-22 13:36:37,736 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb7e5c78eb332b44d57b5 - insert_trained_model_into_mongo
- 2025-05-22 13:36:37,757 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb7e5c78eb332b44d57b7 - insert_scaler_model_into_mongo
- 2025-05-22 13:36:39,035 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
- 2025-05-22 13:43:10,995 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:43:14,416 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 13:43:37,750 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:44:04,231 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:44:04,235 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:45:28,979 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 13:45:28,979 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 13:45:29,000 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:45:29,001 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:45:29,028 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:45:29,029 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:45:29,071 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:45:29,072 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:45:29,073 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:45:29,073 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:45:29,074 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:45:29,075 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:45:31,139 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:45:31,140 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:45:31,142 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:45:31,143 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:46:07,442 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:46:07,442 - tf_lstm.py - INFO - 训练集损失函数为:[8.9715e-01 3.1446e-01 9.7490e-02 2.6710e-02 6.4700e-03 1.4300e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 13:46:07,443 - tf_lstm.py - INFO - 验证集损失函数为:[5.0805e-01 1.6497e-01 4.7450e-02 1.2030e-02 2.7400e-03 6.1000e-04
- 1.7000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 13:46:07,584 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:46:07,584 - tf_lstm.py - INFO - 训练集损失函数为:[8.9563e-01 3.1477e-01 9.8380e-02 2.7490e-02 7.0800e-03 1.9500e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 13:46:07,584 - tf_lstm.py - INFO - 验证集损失函数为:[0.50812 0.16611 0.04868 0.01307 0.00365 0.00146 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 13:46:14,116 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eba26770d6ffe7e22a033 - insert_trained_model_into_mongo
- 2025-05-22 13:46:14,120 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eba26d439ed5d688f8e53 - insert_trained_model_into_mongo
- 2025-05-22 13:46:14,129 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eba26770d6ffe7e22a035 - insert_scaler_model_into_mongo
- 2025-05-22 13:46:14,166 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eba26d439ed5d688f8e55 - insert_scaler_model_into_mongo
- 2025-05-22 14:22:14,267 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:22:14,388 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 14:22:17,074 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:22:19,916 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:22:22,871 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:22:22,872 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:22:23,608 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
- 2025-05-22 14:26:54,980 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:26:55,106 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 14:26:57,683 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:00,530 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:03,427 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:03,432 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:04,177 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
- 2025-05-22 14:27:41,884 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:42,000 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 14:27:44,598 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:47,308 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:50,203 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:50,204 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:50,954 - task_worker.py - ERROR - Area 1002 failed: Can only merge Series or DataFrame objects, a <class 'multiprocessing.managers.DictProxy'> was passed - region_task
- 2025-05-22 15:56:08,387 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 15:56:08,656 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 15:56:11,294 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 15:56:14,276 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 15:56:14,282 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 15:56:14,515 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 15:56:14,534 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 15:56:14,537 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 15:56:14,546 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 15:56:14,553 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 15:56:14,561 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 15:56:14,583 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 15:56:14,583 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 15:56:14,584 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 15:56:14,588 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 15:56:14,588 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 15:56:14,589 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 15:56:15,565 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 15:56:15,566 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 15:56:15,566 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 15:56:15,566 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 15:56:28,464 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 15:56:28,464 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 15:56:28,465 - tf_lstm.py - INFO - 训练集损失函数为:[8.9989e-01 3.1527e-01 9.8050e-02 2.7280e-02 7.0200e-03 1.9400e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 15:56:28,465 - tf_lstm.py - INFO - 训练集损失函数为:[9.0568e-01 3.1746e-01 9.8530e-02 2.7070e-02 6.5900e-03 1.4600e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 15:56:28,465 - tf_lstm.py - INFO - 验证集损失函数为:[0.50977 0.16589 0.04836 0.01296 0.00362 0.00146 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 15:56:28,465 - tf_lstm.py - INFO - 验证集损失函数为:[5.1289e-01 1.6660e-01 4.8030e-02 1.2220e-02 2.8000e-03 6.2000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 15:56:28,507 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ed8acd5726df85922d205 - insert_trained_model_into_mongo
- 2025-05-22 15:56:28,522 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ed8ac2e1adc5f49fe0f09 - insert_trained_model_into_mongo
- 2025-05-22 15:56:28,529 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ed8acd5726df85922d207 - insert_scaler_model_into_mongo
- 2025-05-22 15:56:28,543 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ed8ac2e1adc5f49fe0f0b - insert_scaler_model_into_mongo
- 2025-05-22 15:56:29,862 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
- 2025-05-22 15:57:07,940 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 15:57:08,055 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 15:57:10,632 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 15:57:13,508 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 15:57:13,518 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 15:57:13,711 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 15:57:13,718 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 15:57:13,729 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 15:57:13,736 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 15:57:13,737 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 15:57:13,744 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 15:57:13,770 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 15:57:13,770 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 15:57:13,770 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 15:57:13,776 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 15:57:13,776 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 15:57:13,777 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 15:57:14,694 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 15:57:14,694 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 15:57:14,712 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 15:57:14,713 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 15:57:27,628 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 15:57:27,628 - tf_lstm.py - INFO - 训练集损失函数为:[9.1627e-01 3.2273e-01 1.0049e-01 2.7670e-02 6.7300e-03 1.4900e-03
- 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 15:57:27,628 - tf_lstm.py - INFO - 验证集损失函数为:[5.2048e-01 1.6975e-01 4.9060e-02 1.2500e-02 2.8600e-03 6.3000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 15:57:27,654 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 15:57:27,655 - tf_lstm.py - INFO - 训练集损失函数为:[9.1329e-01 3.2208e-01 1.0066e-01 2.8050e-02 7.1900e-03 1.9700e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 15:57:27,655 - tf_lstm.py - INFO - 验证集损失函数为:[0.51954 0.17006 0.04973 0.01329 0.00368 0.00147 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 15:57:27,670 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ed8e7d0ad45b5ef1ff99f - insert_trained_model_into_mongo
- 2025-05-22 15:57:27,693 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ed8e7952fc3d26b39b369 - insert_trained_model_into_mongo
- 2025-05-22 15:57:27,698 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ed8e7d0ad45b5ef1ff9a1 - insert_scaler_model_into_mongo
- 2025-05-22 15:57:27,700 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ed8e7952fc3d26b39b36b - insert_scaler_model_into_mongo
- 2025-05-22 15:57:28,989 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
- 2025-05-22 16:00:26,751 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:02:27,969 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 16:02:51,521 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:03:20,174 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:03:20,244 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:03:43,812 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 16:03:43,818 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 16:03:43,837 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:03:43,843 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:03:43,869 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:03:43,874 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:03:43,915 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:03:43,916 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:03:43,918 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:03:43,920 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:03:43,920 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:03:43,922 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:03:45,818 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:03:45,820 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:03:45,842 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:03:45,842 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:04:23,192 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:04:23,193 - tf_lstm.py - INFO - 训练集损失函数为:[9.0817e-01 3.2013e-01 1.0016e-01 2.7980e-02 7.1900e-03 1.9700e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 16:04:23,192 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:04:23,193 - tf_lstm.py - INFO - 验证集损失函数为:[0.51636 0.16911 0.04957 0.01328 0.00369 0.00147 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 16:04:23,193 - tf_lstm.py - INFO - 训练集损失函数为:[9.0438e-01 3.1823e-01 9.9190e-02 2.7320e-02 6.6400e-03 1.4700e-03
- 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 16:04:23,193 - tf_lstm.py - INFO - 验证集损失函数为:[5.1324e-01 1.6746e-01 4.8450e-02 1.2330e-02 2.8200e-03 6.2000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 16:04:28,183 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eda8ce1472c691263abcd - insert_trained_model_into_mongo
- 2025-05-22 16:04:28,184 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eda8ca57967ec2470f538 - insert_trained_model_into_mongo
- 2025-05-22 16:04:28,234 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eda8ca57967ec2470f53a - insert_scaler_model_into_mongo
- 2025-05-22 16:04:28,235 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eda8ce1472c691263abcf - insert_scaler_model_into_mongo
- 2025-05-22 16:15:20,362 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:15:20,482 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 16:15:23,124 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:15:26,082 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:15:26,083 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:15:26,299 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 16:15:26,299 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 16:15:26,318 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:15:26,318 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:15:26,326 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:15:26,326 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:15:26,353 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:15:26,353 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:15:26,353 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:15:26,353 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:15:26,353 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:15:26,353 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:15:27,303 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:15:27,303 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:15:27,303 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:15:27,303 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:15:40,212 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:15:40,212 - tf_lstm.py - INFO - 训练集损失函数为:[9.0386e-01 3.1856e-01 9.9750e-02 2.7890e-02 7.1800e-03 1.9800e-03
- 8.3000e-04 6.0000e-04 5.5000e-04 5.5000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 16:15:40,212 - tf_lstm.py - INFO - 训练集损失函数为:[8.9587e-01 3.1399e-01 9.7500e-02 2.6790e-02 6.5000e-03 1.4400e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 16:15:40,212 - tf_lstm.py - INFO - 验证集损失函数为:[0.51364 0.16831 0.04936 0.01325 0.0037 0.00148 0.00101 0.00092 0.0009
- 0.0009 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087
- 0.00087 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 16:15:40,213 - tf_lstm.py - INFO - 验证集损失函数为:[5.0722e-01 1.6484e-01 4.7540e-02 1.2080e-02 2.7600e-03 6.1000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 16:15:40,256 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682edd2c58422a3c9f4e08aa - insert_trained_model_into_mongo
- 2025-05-22 16:15:40,266 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682edd2c1c34fc32963f2881 - insert_trained_model_into_mongo
- 2025-05-22 16:15:40,287 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682edd2c58422a3c9f4e08ac - insert_scaler_model_into_mongo
- 2025-05-22 16:15:40,289 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682edd2c1c34fc32963f2883 - insert_scaler_model_into_mongo
- 2025-05-22 16:15:41,578 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
- 2025-05-22 16:18:18,375 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:18:18,503 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 16:18:21,225 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:18:24,210 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:18:24,216 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:18:24,419 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 16:18:24,420 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 16:18:24,439 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:18:24,440 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:18:24,447 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:18:24,448 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:18:24,475 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:18:24,475 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:18:24,476 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:18:24,476 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:18:24,476 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:18:24,477 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:18:25,429 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:18:25,429 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:18:25,431 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:18:25,431 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:18:38,854 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:18:38,854 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:18:38,854 - tf_lstm.py - INFO - 训练集损失函数为:[8.9569e-01 3.1485e-01 9.8280e-02 2.7410e-02 7.0500e-03 1.9500e-03
- 8.2000e-04 6.0000e-04 5.6000e-04 5.5000e-04 5.5000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 16:18:38,855 - tf_lstm.py - INFO - 训练集损失函数为:[9.1019e-01 3.2047e-01 9.9880e-02 2.7530e-02 6.7100e-03 1.4800e-03
- 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 16:18:38,855 - tf_lstm.py - INFO - 验证集损失函数为:[0.50823 0.16598 0.0485 0.01302 0.00365 0.00147 0.00102 0.00093 0.00091
- 0.0009 0.0009 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087
- 0.00087 0.00087 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086
- 0.00086 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085
- 0.00085 0.00085 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 16:18:38,855 - tf_lstm.py - INFO - 验证集损失函数为:[5.1680e-01 1.6865e-01 4.8800e-02 1.2440e-02 2.8500e-03 6.3000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 16:18:38,892 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eddde166c956a98e4cdb6 - insert_trained_model_into_mongo
- 2025-05-22 16:18:38,903 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eddde9239166b91e13257 - insert_trained_model_into_mongo
- 2025-05-22 16:18:38,910 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eddde9239166b91e13259 - insert_scaler_model_into_mongo
- 2025-05-22 16:18:38,924 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eddde166c956a98e4cdb8 - insert_scaler_model_into_mongo
- 2025-05-22 16:19:36,327 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:19:36,452 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 16:19:39,140 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:19:42,056 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:19:42,056 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:19:42,261 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 16:19:42,261 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 16:19:42,279 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:19:42,279 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:19:42,287 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:19:42,287 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:19:42,316 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:19:42,316 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:19:42,317 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:19:42,317 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:19:42,317 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:19:42,317 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:19:43,248 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:19:43,249 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:19:43,261 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:19:43,261 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:19:56,132 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:19:56,132 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:19:56,133 - tf_lstm.py - INFO - 训练集损失函数为:[9.0371e-01 3.1890e-01 9.9980e-02 2.7980e-02 7.2000e-03 1.9800e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 16:19:56,133 - tf_lstm.py - INFO - 验证集损失函数为:[0.51401 0.16865 0.04951 0.01329 0.0037 0.00147 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
- 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 16:19:56,133 - tf_lstm.py - INFO - 验证集损失函数为:[5.1199e-01 1.6678e-01 4.8120e-02 1.2220e-02 2.7800e-03 6.2000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 16:19:56,191 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ede2c6f86cd09523a290d - insert_trained_model_into_mongo
- 2025-05-22 16:19:56,191 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ede2c82774bd11b16d043 - insert_trained_model_into_mongo
- 2025-05-22 16:19:56,209 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ede2c6f86cd09523a290f - insert_scaler_model_into_mongo
- 2025-05-22 16:19:56,223 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ede2c82774bd11b16d045 - insert_scaler_model_into_mongo
- 2025-05-22 16:19:57,513 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
- 2025-05-22 16:23:41,614 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:23:47,120 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 16:24:10,592 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:24:39,240 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:24:39,242 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:24:39,724 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 16:24:39,726 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 16:24:39,745 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:24:39,748 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:24:39,774 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:24:39,776 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:24:39,816 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:24:39,816 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:24:39,817 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:24:39,817 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:24:39,819 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:24:39,819 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:24:41,717 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:24:41,717 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:24:41,748 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:24:41,748 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:25:18,445 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:25:18,445 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:25:18,445 - tf_lstm.py - INFO - 训练集损失函数为:[9.0181e-01 3.1616e-01 9.7980e-02 2.6830e-02 6.4900e-03 1.4300e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 16:25:18,445 - tf_lstm.py - INFO - 训练集损失函数为:[8.9533e-01 3.1324e-01 9.7340e-02 2.7070e-02 6.9500e-03 1.9200e-03
- 8.1000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 16:25:18,446 - tf_lstm.py - INFO - 验证集损失函数为:[5.1082e-01 1.6583e-01 4.7670e-02 1.2070e-02 2.7500e-03 6.1000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 16:25:18,446 - tf_lstm.py - INFO - 验证集损失函数为:[0.50668 0.16475 0.04801 0.01285 0.00359 0.00145 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 16:25:18,550 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682edf6e4f4d66c1538080fc - insert_trained_model_into_mongo
- 2025-05-22 16:25:18,562 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682edf6e4f4d66c1538080fe - insert_scaler_model_into_mongo
- 2025-05-22 16:25:18,564 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682edf6ee396be238e929ca2 - insert_trained_model_into_mongo
- 2025-05-22 16:25:18,576 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682edf6ee396be238e929ca4 - insert_scaler_model_into_mongo
- 2025-05-22 16:36:42,098 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:37:06,300 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 16:37:29,931 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:37:56,059 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:37:56,060 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:37:56,556 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 16:37:56,556 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 16:37:56,578 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:37:56,578 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:37:56,606 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:37:56,606 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:37:56,647 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:37:56,647 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:37:56,647 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:37:56,649 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:37:56,649 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:37:58,554 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:37:58,554 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:37:58,580 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:37:58,580 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:38:35,605 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:38:35,605 - tf_lstm.py - INFO - 训练集损失函数为:[9.0578e-01 3.1937e-01 1.0006e-01 2.7970e-02 7.1800e-03 1.9700e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 16:38:35,606 - tf_lstm.py - INFO - 验证集损失函数为:[0.51488 0.16886 0.04954 0.01328 0.00368 0.00146 0.001 0.00092 0.0009
- 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
- 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 16:38:35,635 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:38:35,635 - tf_lstm.py - INFO - 训练集损失函数为:[8.9900e-01 3.1653e-01 9.8870e-02 2.7350e-02 6.6900e-03 1.4900e-03
- 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 16:38:35,636 - tf_lstm.py - INFO - 验证集损失函数为:[5.1022e-01 1.6676e-01 4.8400e-02 1.2390e-02 2.8500e-03 6.4000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 16:38:35,708 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee28b27b5da75067d35a8 - insert_trained_model_into_mongo
- 2025-05-22 16:38:35,719 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee28b7a38bab92a0a5a3a - insert_trained_model_into_mongo
- 2025-05-22 16:38:35,731 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee28b7a38bab92a0a5a3c - insert_scaler_model_into_mongo
- 2025-05-22 16:38:35,741 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee28b27b5da75067d35aa - insert_scaler_model_into_mongo
- 2025-05-22 16:41:06,720 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:41:06,848 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 16:41:09,615 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:41:36,827 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:41:52,435 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 16:42:15,970 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:42:47,697 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:42:47,703 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:42:48,195 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 16:42:48,200 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 16:42:48,218 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:42:48,221 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:42:48,246 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:42:48,249 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:42:48,289 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:42:48,289 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:42:48,291 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:42:48,291 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:42:48,291 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:42:48,293 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:42:50,221 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:42:50,222 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:42:50,251 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:42:50,251 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:43:27,237 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:43:27,238 - tf_lstm.py - INFO - 训练集损失函数为:[8.9134e-01 3.1183e-01 9.6960e-02 2.7010e-02 6.9500e-03 1.9300e-03
- 8.1000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 16:43:27,238 - tf_lstm.py - INFO - 验证集损失函数为:[0.50446 0.16402 0.04786 0.01284 0.0036 0.00145 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 16:43:27,314 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:43:27,314 - tf_lstm.py - INFO - 训练集损失函数为:[8.9997e-01 3.1582e-01 9.7960e-02 2.6850e-02 6.5100e-03 1.4400e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 16:43:27,314 - tf_lstm.py - INFO - 验证集损失函数为:[5.1007e-01 1.6575e-01 4.7690e-02 1.2090e-02 2.7600e-03 6.1000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 16:43:27,336 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee3afa37ce5e300dffc58 - insert_trained_model_into_mongo
- 2025-05-22 16:43:27,385 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee3afa37ce5e300dffc5a - insert_scaler_model_into_mongo
- 2025-05-22 16:43:27,429 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee3afded77197474391d7 - insert_trained_model_into_mongo
- 2025-05-22 16:43:27,441 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee3afded77197474391d9 - insert_scaler_model_into_mongo
- 2025-05-22 16:45:43,854 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
- 2025-05-22 16:46:18,805 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:46:21,969 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 16:46:46,365 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:47:14,361 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:47:14,373 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:47:15,097 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 16:47:15,100 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 16:47:15,135 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:47:15,136 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:47:15,169 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:47:15,173 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:47:15,235 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:47:15,235 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:47:15,239 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:47:15,241 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:47:15,241 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:47:15,244 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:47:17,702 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:47:17,703 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:47:17,719 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:47:17,720 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:47:59,223 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:47:59,223 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:47:59,223 - tf_lstm.py - INFO - 训练集损失函数为:[9.0682e-01 3.1992e-01 1.0042e-01 2.8180e-02 7.2700e-03 2.0000e-03
- 8.3000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 16:47:59,223 - tf_lstm.py - INFO - 训练集损失函数为:[9.0271e-01 3.1676e-01 9.8510e-02 2.7120e-02 6.6000e-03 1.4600e-03
- 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 16:47:59,224 - tf_lstm.py - INFO - 验证集损失函数为:[0.51566 0.1692 0.04981 0.0134 0.00373 0.00148 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
- 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 16:47:59,224 - tf_lstm.py - INFO - 验证集损失函数为:[5.1142e-01 1.6643e-01 4.8090e-02 1.2250e-02 2.8000e-03 6.2000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 16:47:59,336 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee4bf35eeabaeac48dbca - insert_trained_model_into_mongo
- 2025-05-22 16:47:59,349 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee4bf35eeabaeac48dbcc - insert_scaler_model_into_mongo
- 2025-05-22 16:47:59,372 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee4bf9324837aabe55d44 - insert_scaler_model_into_mongo
- 2025-05-22 16:51:53,965 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:51:54,086 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 16:51:56,677 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:51:59,595 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:51:59,599 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:51:59,803 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 16:51:59,821 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:51:59,829 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:51:59,829 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:51:59,857 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:51:59,857 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:51:59,858 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:51:59,858 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:51:59,858 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:51:59,859 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:52:00,807 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:52:00,807 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:52:00,816 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:52:00,816 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:52:13,882 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:52:13,883 - tf_lstm.py - INFO - 训练集损失函数为:[9.0366e-01 3.1743e-01 9.8920e-02 2.7540e-02 7.0700e-03 1.9500e-03
- 8.2000e-04 6.0000e-04 5.5000e-04 5.5000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 16:52:13,883 - tf_lstm.py - INFO - 验证集损失函数为:[0.51271 0.16722 0.0488 0.01307 0.00364 0.00146 0.00101 0.00092 0.0009
- 0.0009 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087
- 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 16:52:13,924 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee5bde140b01fd24f34ff - insert_trained_model_into_mongo
- 2025-05-22 16:52:13,932 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee5bde140b01fd24f3501 - insert_scaler_model_into_mongo
- 2025-05-22 16:52:13,956 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:52:13,957 - tf_lstm.py - INFO - 训练集损失函数为:[8.9291e-01 3.1420e-01 9.8070e-02 2.7090e-02 6.6100e-03 1.4600e-03
- 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 16:52:13,957 - tf_lstm.py - INFO - 验证集损失函数为:[5.0656e-01 1.6547e-01 4.7970e-02 1.2260e-02 2.8100e-03 6.3000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 16:52:13,993 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee5bdd1747a06d97e0ef3 - insert_trained_model_into_mongo
- 2025-05-22 16:52:14,030 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee5bed1747a06d97e0ef5 - insert_scaler_model_into_mongo
- 2025-05-22 16:52:15,315 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
- 2025-05-22 16:54:08,472 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:54:12,196 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 16:54:36,162 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:55:09,151 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:55:09,153 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:55:09,901 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 16:55:09,941 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:55:09,941 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:55:09,977 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:55:10,026 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:55:10,027 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:55:10,027 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:55:10,027 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:55:10,029 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:55:10,029 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:55:12,772 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:55:12,773 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:55:12,785 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:55:12,785 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:56:01,718 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:56:01,720 - tf_lstm.py - INFO - 训练集损失函数为:[9.0185e-01 3.1664e-01 9.8400e-02 2.7020e-02 6.5600e-03 1.4500e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 16:56:01,720 - tf_lstm.py - INFO - 训练集损失函数为:[9.0446e-01 3.1836e-01 9.9350e-02 2.7650e-02 7.0800e-03 1.9400e-03
- 8.1000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 16:56:01,720 - tf_lstm.py - INFO - 验证集损失函数为:[5.1114e-01 1.6636e-01 4.7960e-02 1.2180e-02 2.7800e-03 6.2000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 16:56:01,720 - tf_lstm.py - INFO - 验证集损失函数为:[0.51384 0.16792 0.04904 0.0131 0.00363 0.00145 0.001 0.00092 0.0009
- 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 16:56:01,831 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee6a10749b0ee0fe21ed9 - insert_trained_model_into_mongo
- 2025-05-22 16:56:01,843 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee6a10749b0ee0fe21edb - insert_scaler_model_into_mongo
- 2025-05-22 16:56:01,864 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee6a13f317b0620e79546 - insert_trained_model_into_mongo
- 2025-05-22 16:56:01,899 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee6a13f317b0620e79548 - insert_scaler_model_into_mongo
- 2025-05-22 18:30:17,846 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 18:30:17,971 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 18:30:20,914 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 18:30:24,052 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 18:30:24,054 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 18:30:24,282 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 18:30:24,299 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 18:30:24,300 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 18:30:24,308 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 18:30:24,308 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 18:30:24,335 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 18:30:24,335 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 18:30:24,335 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 18:30:24,335 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 18:30:24,336 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 18:30:24,336 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 18:30:25,304 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 18:30:25,304 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 18:30:25,304 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 18:30:25,305 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 18:30:39,377 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 18:30:39,377 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 18:30:39,377 - tf_lstm.py - INFO - 训练集损失函数为:[9.0965e-01 3.2084e-01 1.0057e-01 2.8150e-02 7.2500e-03 1.9900e-03
- 8.3000e-04 6.0000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 18:30:39,377 - tf_lstm.py - INFO - 训练集损失函数为:[9.0351e-01 3.1783e-01 9.9160e-02 2.7360e-02 6.6700e-03 1.4700e-03
- 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 18:30:39,378 - tf_lstm.py - INFO - 验证集损失函数为:[0.51728 0.16966 0.04982 0.01337 0.00372 0.00148 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 18:30:39,378 - tf_lstm.py - INFO - 验证集损失函数为:[5.1250e-01 1.6734e-01 4.8480e-02 1.2370e-02 2.8300e-03 6.3000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 18:30:39,422 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682efccfd9cdd24a561b9430 - insert_trained_model_into_mongo
- 2025-05-22 18:30:39,444 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682efccf11d24a1b0567e1cd - insert_trained_model_into_mongo
- 2025-05-22 18:30:39,447 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682efccfd9cdd24a561b9432 - insert_scaler_model_into_mongo
- 2025-05-22 18:30:39,452 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682efccf11d24a1b0567e1cf - insert_scaler_model_into_mongo
- 2025-05-22 18:35:43,479 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 18:35:43,599 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 18:35:46,348 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 18:35:49,304 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 18:35:49,313 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 18:35:49,509 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 18:35:49,518 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 18:35:49,527 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 18:35:49,535 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 18:35:49,536 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 18:35:49,545 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 18:35:49,563 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 18:35:49,563 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 18:35:49,564 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 18:35:49,572 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 18:35:49,572 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 18:35:49,573 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 18:35:50,543 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 18:35:50,543 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 18:35:50,543 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 18:35:50,543 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 18:36:05,459 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 18:36:05,459 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 18:36:05,460 - tf_lstm.py - INFO - 训练集损失函数为:[9.0471e-01 3.1927e-01 1.0005e-01 2.7970e-02 7.1900e-03 1.9800e-03
- 8.3000e-04 6.0000e-04 5.5000e-04 5.5000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 18:36:05,460 - tf_lstm.py - INFO - 验证集损失函数为:[5.1764e-01 1.6935e-01 4.9040e-02 1.2470e-02 2.8400e-03 6.3000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 18:36:05,514 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682efe15d416e8f832fd0f55 - insert_trained_model_into_mongo
- 2025-05-22 18:36:05,514 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682efe155dc17e5973916862 - insert_trained_model_into_mongo
- 2025-05-22 18:36:05,546 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682efe155dc17e5973916864 - insert_scaler_model_into_mongo
- 2025-05-22 18:36:05,561 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682efe15d416e8f832fd0f57 - insert_scaler_model_into_mongo
- 2025-05-22 18:36:06,898 - task_worker.py - ERROR - Area 1002 failed: 'types.SimpleNamespace' object has no attribute 'cap' - region_task
|