123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- #!/usr/bin/env python
- # -*- coding:utf-8 -*-
- # @FileName :tf_lstm_train.py
- # @Time :2025/2/13 10:52
- # @Author :David
- # @Company: shenyang JY
- import json, os
- import numpy as np
- import traceback
- import logging
- from app.common.logs import params
- from app.common.data_handler import DataHandler, write_number_to_file
- import time
- from app.common.tf_lstm import TSHandler
- from app.common.dbmg import MongoUtils
- from app.common.logs import logger
- from copy import deepcopy
- np.random.seed(42) # NumPy随机种子
- # tf.set_random_seed(42) # TensorFlow随机种子
- mgUtils = MongoUtils(logger)
- def model_training(train_data, input_file, cap):
- # 获取程序开始时间
- start_time = time.time()
- success = 0
- logger.info("Program starts execution!")
- farm_id = input_file.split('/')[-2]
- output_file = input_file.replace('IN', 'OUT')
- status_file = 'STATUS.TXT'
- # 创建线程独立的实例
- local_params = deepcopy(params)
- dh = DataHandler(logger, local_params)
- ts = TSHandler(logger, local_params)
- try:
- # ------------ 获取数据,预处理训练数据 ------------
- dh.opt.cap = cap
- train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
- ts.opt.cap = round(scaled_cap, 2)
- ts.opt.Model['input_size'] = train_x.shape[2]
- # ------------ 训练模型,保存模型 ------------
- # 1. 如果是加强训练模式,先加载预训练模型特征参数,再预处理训练数据
- # 2. 如果是普通模式,先预处理训练数据,再根据训练数据特征加载模型
- model = ts.train_init() if ts.opt.Model['add_train'] else ts.get_keras_model(ts.opt)
- if ts.opt.Model['add_train']:
- if model:
- feas = json.loads(ts.model_params).get('features', dh.opt.features)
- if set(feas).issubset(set(dh.opt.features)):
- dh.opt.features = list(feas)
- train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
- else:
- model = ts.get_keras_model(ts.opt)
- logger.info("训练数据特征,不满足,加强训练模型特征")
- else:
- model = ts.get_keras_model(ts.opt)
- ts_model = ts.training(model, [train_x, valid_x, train_y, valid_y])
- success = 1
- # 更新算法状态:1. 启动成功
- write_number_to_file(os.path.join(output_file, status_file), 1, 1, 'rewrite')
- # ------------ 组装模型数据 ------------
- local_params['Model']['features'] = ','.join(dh.opt.features)
- local_params.update({
- 'params': json.dumps(local_params),
- 'descr': f'南网竞赛-{farm_id}',
- 'gen_time': time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()),
- 'model_table': local_params['model_table'] + farm_id,
- 'scaler_table': local_params['scaler_table'] + farm_id
- })
- mgUtils.insert_trained_model_into_mongo(ts_model, local_params)
- mgUtils.insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, local_params)
- # 更新算法状态:正常结束
- write_number_to_file(os.path.join(output_file, status_file), 2, 2)
- except Exception as e:
- # 如果算法状态没启动,不更新
- if success:
- write_number_to_file(os.path.join(output_file, status_file), 2, 3)
- my_exception = traceback.format_exc()
- my_exception.replace("\n", "\t")
- end_time = time.time()
- logger.info("lstm训练任务:用了 %s 秒 " % (end_time-start_time))
- if __name__ == "__main__":
- print("Program starts execution!")
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- logger = logging.getLogger("model_training_bp log")
- from waitress import serve
- serve(app, host="0.0.0.0", port=10103, threads=4)
- print("server start!")
- # args_dict = {"mongodb_database": 'realtimeDq', 'scaler_table': 'j00600_scaler', 'model_name': 'lstm1',
- # 'model_table': 'j00600_model', 'mongodb_read_table': 'j00600', 'col_time': 'dateTime',
- # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
- # args_dict['features'] = args_dict['features'].split(',')
- # args.update(args_dict)
- # dh = DataHandler(logger, args)
- # ts = TSHandler(logger, args)
- # opt = argparse.Namespace(**args)
- # opt.Model['input_size'] = len(opt.features)
- # train_data = get_data_from_mongo(args_dict)
- # train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data)
- # ts_model = ts.training([train_x, train_y, valid_x, valid_y])
- #
- # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
- # args_dict['params'] = args
- # args_dict['descr'] = '测试'
- # insert_trained_model_into_mongo(ts_model, args_dict)
- # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)
|