tf_fmi_train.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_lstm_train.py
  4. # @Time :2025/2/13 10:52
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json, os
  8. import numpy as np
  9. import traceback
  10. import logging
  11. from app.common.logs import params
  12. from app.common.data_handler import DataHandler, write_number_to_file
  13. import time
  14. from app.common.tf_fmi import FMIHandler
  15. from app.common.dbmg import MongoUtils
  16. from app.common.logs import logger
  17. from copy import deepcopy
  18. np.random.seed(42) # NumPy随机种子
  19. # tf.set_random_seed(42) # TensorFlow随机种子
  20. mgUtils = MongoUtils(logger)
  21. def model_training(train_data, input_file, cap):
  22. # 获取程序开始时间
  23. start_time = time.time()
  24. success = 0
  25. logger.info("Program starts execution!")
  26. farm_id = input_file.split('/')[-2]
  27. output_file = input_file.replace('IN', 'OUT')
  28. status_file = 'STATUS.TXT'
  29. # 创建线程独立的实例
  30. local_params = deepcopy(params)
  31. dh = DataHandler(logger, local_params)
  32. fmi = FMIHandler(logger, local_params)
  33. try:
  34. # ------------ 获取数据,预处理训练数据 ------------
  35. dh.opt.cap = cap
  36. train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
  37. fmi.opt.cap = round(scaled_cap, 2)
  38. fmi.opt.Model['input_size'] = train_x.shape[2]
  39. # ------------ 训练模型,保存模型 ------------
  40. # 1. 如果是加强训练模式,先加载预训练模型特征参数,再预处理训练数据
  41. # 2. 如果是普通模式,先预处理训练数据,再根据训练数据特征加载模型
  42. model = fmi.train_init() if fmi.opt.Model['add_train'] else fmi.get_keras_model(fmi.opt)
  43. if fmi.opt.Model['add_train']:
  44. if model:
  45. feas = json.loads(fmi.model_params).get('features', dh.opt.features)
  46. if set(feas).issubset(set(dh.opt.features)):
  47. dh.opt.features = list(feas)
  48. train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
  49. else:
  50. model = fmi.get_keras_model(fmi.opt)
  51. logger.info("训练数据特征,不满足,加强训练模型特征")
  52. else:
  53. model = fmi.get_keras_model(fmi.opt)
  54. ts_model = fmi.training(model, [train_x, valid_x, train_y, valid_y])
  55. success = 1
  56. # 更新算法状态:1. 启动成功
  57. write_number_to_file(os.path.join(output_file, status_file), 1, 1, 'rewrite')
  58. # ------------ 组装模型数据 ------------
  59. local_params['Model']['features'] = ','.join(dh.opt.features)
  60. local_params.update({
  61. 'params': json.dumps(local_params),
  62. 'descr': f'南网竞赛-{farm_id}',
  63. 'gen_time': time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()),
  64. 'model_table': local_params['model_table'] + farm_id,
  65. 'scaler_table': local_params['scaler_table'] + farm_id
  66. })
  67. mgUtils.insert_trained_model_into_mongo(ts_model, local_params)
  68. mgUtils.insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, local_params)
  69. # 更新算法状态:正常结束
  70. write_number_to_file(os.path.join(output_file, status_file), 2, 2)
  71. except Exception as e:
  72. # 如果算法状态没启动,不更新
  73. if success:
  74. write_number_to_file(os.path.join(output_file, status_file), 2, 3)
  75. my_exception = traceback.format_exc()
  76. my_exception.replace("\n", "\t")
  77. end_time = time.time()
  78. logger.info("fmi训练任务:用了 %s 秒 " % (end_time-start_time))
  79. if __name__ == "__main__":
  80. print("Program starts execution!")
  81. logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  82. logger = logging.getLogger("model_training_bp log")
  83. from waitress import serve
  84. serve(app, host="0.0.0.0", port=10103, threads=4)
  85. print("server start!")
  86. # args_dict = {"mongodb_database": 'realtimeDq', 'scaler_table': 'j00600_scaler', 'model_name': 'lstm1',
  87. # 'model_table': 'j00600_model', 'mongodb_read_table': 'j00600', 'col_time': 'dateTime',
  88. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  89. # args_dict['features'] = args_dict['features'].split(',')
  90. # args.update(args_dict)
  91. # dh = DataHandler(logger, args)
  92. # ts = TSHandler(logger, args)
  93. # opt = argparse.Namespace(**args)
  94. # opt.Model['input_size'] = len(opt.features)
  95. # train_data = get_data_from_mongo(args_dict)
  96. # train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data)
  97. # ts_model = ts.training([train_x, train_y, valid_x, valid_y])
  98. #
  99. # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  100. # args_dict['params'] = args
  101. # args_dict['descr'] = '测试'
  102. # insert_trained_model_into_mongo(ts_model, args_dict)
  103. # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)