tf_cnn_train.py 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_lstm_train.py
  4. # @Time :2025/2/13 10:52
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json, os
  8. import numpy as np
  9. import traceback
  10. import logging
  11. from app.common.logs import params
  12. from app.common.data_handler import DataHandler, write_number_to_file
  13. import time
  14. from app.common.tf_cnn import CNNHandler
  15. from app.common.dbmg import MongoUtils
  16. from app.common.logs import logger
  17. from copy import deepcopy
  18. np.random.seed(42) # NumPy随机种子
  19. # tf.set_random_seed(42) # TensorFlow随机种子
  20. mgUtils = MongoUtils(logger)
  21. def model_training(train_data, input_file, cap):
  22. # 获取程序开始时间
  23. start_time = time.time()
  24. success = 0
  25. logger.info("Program starts execution!")
  26. farm_id = input_file.split('/')[-2]
  27. output_file = input_file.replace('IN', 'OUT')
  28. status_file = 'STATUS.TXT'
  29. local_params = deepcopy(params)
  30. dh = DataHandler(logger, local_params)
  31. cnn = CNNHandler(logger, local_params)
  32. try:
  33. # ------------ 获取数据,预处理训练数据 ------------
  34. dh.opt.cap = cap
  35. train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
  36. cnn.opt.cap = round(scaled_cap, 2)
  37. cnn.opt.Model['input_size'] = train_x.shape[2]
  38. # ------------ 训练模型,保存模型 ------------
  39. # 1. 如果是加强训练模式,先加载预训练模型特征参数,再预处理训练数据
  40. # 2. 如果是普通模式,先预处理训练数据,再根据训练数据特征加载模型
  41. model = cnn.train_init() if cnn.opt.Model['add_train'] else cnn.get_keras_model(cnn.opt)
  42. if cnn.opt.Model['add_train']:
  43. if model:
  44. feas = json.loads(cnn.model_params).get('features', dh.opt.features)
  45. if set(feas).issubset(set(dh.opt.features)):
  46. dh.opt.features = list(feas)
  47. train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
  48. else:
  49. model = cnn.get_keras_model(cnn.opt)
  50. logger.info("训练数据特征,不满足,加强训练模型特征")
  51. else:
  52. model = cnn.get_keras_model(cnn.opt)
  53. ts_model = cnn.training(model, [train_x, valid_x, train_y, valid_y])
  54. success = 1
  55. # 更新算法状态:1. 启动成功
  56. write_number_to_file(os.path.join(output_file, status_file), 1, 1, 'rewrite')
  57. # ------------ 组装模型数据 ------------
  58. local_params['Model']['features'] = ','.join(dh.opt.features)
  59. local_params.update({
  60. 'params': json.dumps(local_params),
  61. 'descr': f'南网竞赛-{farm_id}',
  62. 'gen_time': time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()),
  63. 'model_table': local_params['model_table'] + farm_id,
  64. 'scaler_table': local_params['scaler_table'] + farm_id
  65. })
  66. mgUtils.insert_trained_model_into_mongo(ts_model, local_params)
  67. mgUtils.insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, local_params)
  68. # 更新算法状态:正常结束
  69. write_number_to_file(os.path.join(output_file, status_file), 2, 2)
  70. except Exception as e:
  71. # 如果算法状态没启动,不更新
  72. if success:
  73. write_number_to_file(os.path.join(output_file, status_file), 2, 3)
  74. my_exception = traceback.format_exc()
  75. my_exception.replace("\n", "\t")
  76. end_time = time.time()
  77. logger.info("cnn训练任务:用了 %s 秒 " % (end_time-start_time))
  78. if __name__ == "__main__":
  79. print("Program starts execution!")
  80. logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  81. logger = logging.getLogger("model_training_bp log")
  82. from waitress import serve
  83. serve(app, host="0.0.0.0", port=10103, threads=4)
  84. print("server start!")
  85. # args_dict = {"mongodb_database": 'realtimeDq', 'scaler_table': 'j00600_scaler', 'model_name': 'lstm1',
  86. # 'model_table': 'j00600_model', 'mongodb_read_table': 'j00600', 'col_time': 'dateTime',
  87. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  88. # args_dict['features'] = args_dict['features'].split(',')
  89. # args.update(args_dict)
  90. # dh = DataHandler(logger, args)
  91. # ts = TSHandler(logger, args)
  92. # opt = argparse.Namespace(**args)
  93. # opt.Model['input_size'] = len(opt.features)
  94. # train_data = get_data_from_mongo(args_dict)
  95. # train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data)
  96. # ts_model = ts.training([train_x, train_y, valid_x, valid_y])
  97. #
  98. # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  99. # args_dict['params'] = args
  100. # args_dict['descr'] = '测试'
  101. # insert_trained_model_into_mongo(ts_model, args_dict)
  102. # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)