south-forecast.2025-03-28.0.log 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173
  1. 2025-03-28 09:40:35,370 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  2. - _tfmw_add_deprecation_warning
  3. 2025-03-28 09:40:35,651 - tf_fmi_train.py - INFO - Program starts execution! - model_training
  4. 2025-03-28 09:40:35,706 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  5. 2025-03-28 09:40:35,716 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning
  6. 2025-03-28 09:41:23,101 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  7. - _tfmw_add_deprecation_warning
  8. 2025-03-28 09:41:23,531 - tf_fmi_train.py - INFO - Program starts execution! - model_training
  9. 2025-03-28 09:41:49,477 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  10. 2025-03-28 09:41:50,284 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubDireciton', 'HubSpeed'} - data_column_cleaning
  11. 2025-03-28 09:42:35,806 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  12. - _tfmw_add_deprecation_warning
  13. 2025-03-28 09:42:40,835 - tf_fmi_train.py - INFO - Program starts execution! - model_training
  14. 2025-03-28 09:42:47,459 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  15. 2025-03-28 09:42:51,045 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubDireciton', 'HubSpeed'} - data_column_cleaning
  16. 2025-03-28 09:45:13,770 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  17. - _tfmw_add_deprecation_warning
  18. 2025-03-28 09:45:32,937 - tf_fmi_train.py - INFO - Program starts execution! - model_training
  19. 2025-03-28 09:45:59,675 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  20. 2025-03-28 09:47:20,649 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  21. - _tfmw_add_deprecation_warning
  22. 2025-03-28 09:47:24,365 - tf_fmi_train.py - INFO - Program starts execution! - model_training
  23. 2025-03-28 09:47:32,614 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  24. 2025-03-28 09:47:33,522 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubDireciton', 'HubSpeed'} - data_column_cleaning
  25. 2025-03-28 09:47:35,902 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
  26. 2025-03-28 09:47:46,273 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
  27. 2025-03-28 09:47:46,273 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
  28. 2025-03-28 09:47:46,306 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
  29. 2025-03-28 09:47:46,307 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  30. 2025-03-28 09:47:46,307 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  31. 2025-03-28 09:47:46,308 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
  32. 2025-03-28 09:47:46,308 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  33. 2025-03-28 09:47:46,308 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  34. 2025-03-28 09:47:46,312 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
  35. 2025-03-28 09:47:46,312 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
  36. 2025-03-28 09:47:46,317 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
  37. 2025-03-28 09:47:46,318 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  38. 2025-03-28 09:47:46,319 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
  39. 2025-03-28 09:47:46,320 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  40. 2025-03-28 09:47:46,321 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
  41. 2025-03-28 09:47:46,321 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  42. 2025-03-28 09:47:46,322 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
  43. 2025-03-28 09:47:46,322 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  44. 2025-03-28 09:47:46,323 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
  45. 2025-03-28 09:47:46,324 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  46. 2025-03-28 09:47:46,325 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
  47. 2025-03-28 09:47:46,325 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  48. 2025-03-28 09:47:46,326 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
  49. 2025-03-28 09:47:46,326 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
  50. 2025-03-28 09:47:46,326 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
  51. 2025-03-28 09:47:46,340 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
  52. 2025-03-28 09:47:46,340 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
  53. 2025-03-28 09:47:46,342 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
  54. 2025-03-28 09:47:46,342 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
  55. 2025-03-28 09:47:46,344 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
  56. 2025-03-28 09:47:46,344 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  57. 2025-03-28 09:47:46,345 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
  58. 2025-03-28 09:47:46,345 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  59. 2025-03-28 09:47:46,346 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
  60. 2025-03-28 09:47:46,346 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  61. 2025-03-28 09:47:46,347 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
  62. 2025-03-28 09:47:46,347 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  63. 2025-03-28 09:47:46,348 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
  64. 2025-03-28 09:47:46,348 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
  65. 2025-03-28 09:47:46,350 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
  66. 2025-03-28 09:47:47,803 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
  67. 2025-03-28 09:47:47,810 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
  68. 2025-03-28 09:47:47,815 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
  69. 2025-03-28 09:47:47,819 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  70. 2025-03-28 09:47:47,824 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  71. 2025-03-28 09:47:47,828 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  72. 2025-03-28 09:47:47,833 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  73. 2025-03-28 09:47:47,837 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  74. 2025-03-28 09:47:47,843 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
  75. 2025-03-28 09:47:47,847 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
  76. 2025-03-28 09:47:47,852 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
  77. 2025-03-28 09:47:47,856 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  78. 2025-03-28 09:47:47,860 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  79. 2025-03-28 09:47:47,865 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  80. 2025-03-28 09:47:47,869 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
  81. 2025-03-28 09:47:47,870 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
  82. 2025-03-28 09:47:58,110 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  83. 2025-03-28 09:47:58,110 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  84. 2025-03-28 09:47:58,110 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  85. 2025-03-28 09:47:58,110 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  86. 2025-03-28 09:47:58,110 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  87. 2025-03-28 09:47:58,110 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  88. 2025-03-28 09:47:58,110 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  89. 2025-03-28 09:47:58,110 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  90. 2025-03-28 09:48:03,145 - dbmg.py - INFO - ❌ 系统异常: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - get_keras_model_from_mongo
  91. 2025-03-28 09:48:03,145 - tf_fmi.py - INFO - 加强训练加载模型权重失败:("Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}",) - train_init
  92. 2025-03-28 09:48:42,795 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  93. - _tfmw_add_deprecation_warning
  94. 2025-03-28 09:48:42,894 - tf_fmi_train.py - INFO - Program starts execution! - model_training
  95. 2025-03-28 09:48:42,947 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  96. 2025-03-28 09:48:42,956 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning
  97. 2025-03-28 09:48:42,970 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
  98. 2025-03-28 09:48:42,981 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
  99. 2025-03-28 09:48:42,981 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
  100. 2025-03-28 09:48:43,016 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
  101. 2025-03-28 09:48:43,016 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  102. 2025-03-28 09:48:43,016 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  103. 2025-03-28 09:48:43,017 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
  104. 2025-03-28 09:48:43,017 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  105. 2025-03-28 09:48:43,017 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  106. 2025-03-28 09:48:43,022 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
  107. 2025-03-28 09:48:43,022 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
  108. 2025-03-28 09:48:43,027 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
  109. 2025-03-28 09:48:43,027 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  110. 2025-03-28 09:48:43,028 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
  111. 2025-03-28 09:48:43,028 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  112. 2025-03-28 09:48:43,029 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
  113. 2025-03-28 09:48:43,030 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  114. 2025-03-28 09:48:43,030 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
  115. 2025-03-28 09:48:43,031 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  116. 2025-03-28 09:48:43,032 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
  117. 2025-03-28 09:48:43,032 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  118. 2025-03-28 09:48:43,033 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
  119. 2025-03-28 09:48:43,033 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  120. 2025-03-28 09:48:43,033 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
  121. 2025-03-28 09:48:43,034 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
  122. 2025-03-28 09:48:43,034 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
  123. 2025-03-28 09:48:43,047 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
  124. 2025-03-28 09:48:43,047 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
  125. 2025-03-28 09:48:43,049 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
  126. 2025-03-28 09:48:43,049 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
  127. 2025-03-28 09:48:43,050 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
  128. 2025-03-28 09:48:43,051 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  129. 2025-03-28 09:48:43,052 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
  130. 2025-03-28 09:48:43,052 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  131. 2025-03-28 09:48:43,053 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
  132. 2025-03-28 09:48:43,053 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  133. 2025-03-28 09:48:43,054 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
  134. 2025-03-28 09:48:43,054 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  135. 2025-03-28 09:48:43,055 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
  136. 2025-03-28 09:48:43,055 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
  137. 2025-03-28 09:48:43,056 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
  138. 2025-03-28 09:48:43,057 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
  139. 2025-03-28 09:48:43,061 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
  140. 2025-03-28 09:48:43,062 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
  141. 2025-03-28 09:48:43,063 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  142. 2025-03-28 09:48:43,064 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  143. 2025-03-28 09:48:43,065 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  144. 2025-03-28 09:48:43,067 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  145. 2025-03-28 09:48:43,067 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  146. 2025-03-28 09:48:43,069 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
  147. 2025-03-28 09:48:43,071 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
  148. 2025-03-28 09:48:43,072 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
  149. 2025-03-28 09:48:43,073 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  150. 2025-03-28 09:48:43,074 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  151. 2025-03-28 09:48:43,075 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  152. 2025-03-28 09:48:43,076 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
  153. 2025-03-28 09:48:43,076 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
  154. 2025-03-28 09:48:45,483 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  155. 2025-03-28 09:48:45,484 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  156. 2025-03-28 09:48:45,484 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  157. 2025-03-28 09:48:45,484 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  158. 2025-03-28 09:48:45,484 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  159. 2025-03-28 09:48:45,484 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  160. 2025-03-28 09:48:45,484 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  161. 2025-03-28 09:48:45,484 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  162. 2025-03-28 09:48:45,672 - dbmg.py - INFO - ❌ 系统异常: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - get_keras_model_from_mongo
  163. 2025-03-28 09:48:45,672 - tf_fmi.py - INFO - 加强训练加载模型权重失败:("Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}",) - train_init
  164. 2025-03-28 09:48:56,555 - tf_fmi.py - INFO - -----模型训练经过27轮迭代----- - training
  165. 2025-03-28 09:48:56,556 - tf_fmi.py - INFO - 训练集损失函数为:[50.81253 27.42134 15.70889 9.45657 5.92459 3.68006 2.2472 1.37757
  166. 0.88398 0.61301 0.46807 0.38933 0.34411 0.32137 0.30921 0.30322
  167. 0.29953 0.29853 0.29652 0.29489 0.29435 0.29366 0.29466 0.29338
  168. 0.29248 0.29236 0.2922 ] - training
  169. 2025-03-28 09:48:56,556 - tf_fmi.py - INFO - 验证集损失函数为:[31.24954 19.522 11.71835 7.35976 4.65779 2.91401 1.82848 1.18742
  170. 0.80744 0.58592 0.46629 0.40836 0.38216 0.37268 0.37405 0.36883
  171. 0.36879 0.38428 0.37288 0.37732 0.38255 0.39734 0.39197 0.41757
  172. 0.39943 0.39559 0.42329] - training
  173. 2025-03-28 09:48:56,621 - dbmg.py - INFO - ❌ 数据库操作 - 详细错误: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - insert_trained_model_into_mongo