south-forecast.2025-03-25.0.log 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235
  1. 2025-03-25 08:48:02,492 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  2. - _tfmw_add_deprecation_warning
  3. 2025-03-25 08:48:02,832 - tf_lstm_train.py - INFO - Program starts execution! - model_training
  4. 2025-03-25 08:48:02,886 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  5. 2025-03-25 08:48:02,895 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning
  6. 2025-03-25 08:48:02,913 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
  7. 2025-03-25 08:48:02,933 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
  8. 2025-03-25 08:48:02,933 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
  9. 2025-03-25 08:48:02,966 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
  10. 2025-03-25 08:48:02,966 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  11. 2025-03-25 08:48:02,966 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  12. 2025-03-25 08:48:02,967 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
  13. 2025-03-25 08:48:02,968 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  14. 2025-03-25 08:48:02,968 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  15. 2025-03-25 08:48:02,971 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
  16. 2025-03-25 08:48:02,971 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
  17. 2025-03-25 08:48:02,976 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
  18. 2025-03-25 08:48:02,977 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  19. 2025-03-25 08:48:02,978 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
  20. 2025-03-25 08:48:02,978 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  21. 2025-03-25 08:48:02,979 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
  22. 2025-03-25 08:48:02,979 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  23. 2025-03-25 08:48:02,980 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
  24. 2025-03-25 08:48:02,980 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  25. 2025-03-25 08:48:02,981 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
  26. 2025-03-25 08:48:02,981 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  27. 2025-03-25 08:48:02,982 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
  28. 2025-03-25 08:48:02,982 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  29. 2025-03-25 08:48:02,984 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
  30. 2025-03-25 08:48:02,984 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
  31. 2025-03-25 08:48:02,984 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
  32. 2025-03-25 08:48:02,997 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
  33. 2025-03-25 08:48:02,997 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
  34. 2025-03-25 08:48:02,999 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
  35. 2025-03-25 08:48:02,999 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
  36. 2025-03-25 08:48:03,000 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
  37. 2025-03-25 08:48:03,001 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  38. 2025-03-25 08:48:03,001 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
  39. 2025-03-25 08:48:03,001 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  40. 2025-03-25 08:48:03,002 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
  41. 2025-03-25 08:48:03,002 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  42. 2025-03-25 08:48:03,003 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
  43. 2025-03-25 08:48:03,003 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  44. 2025-03-25 08:48:03,005 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
  45. 2025-03-25 08:48:03,005 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
  46. 2025-03-25 08:48:03,005 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
  47. 2025-03-25 08:48:03,014 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
  48. 2025-03-25 08:48:03,017 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
  49. 2025-03-25 08:48:03,019 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
  50. 2025-03-25 08:48:03,020 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  51. 2025-03-25 08:48:03,021 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  52. 2025-03-25 08:48:03,022 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  53. 2025-03-25 08:48:03,023 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  54. 2025-03-25 08:48:03,024 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  55. 2025-03-25 08:48:03,026 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
  56. 2025-03-25 08:48:03,027 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
  57. 2025-03-25 08:48:03,028 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
  58. 2025-03-25 08:48:03,029 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  59. 2025-03-25 08:48:03,031 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  60. 2025-03-25 08:48:03,032 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  61. 2025-03-25 08:48:03,033 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
  62. 2025-03-25 08:48:03,033 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
  63. 2025-03-25 08:48:05,457 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  64. 2025-03-25 08:48:05,457 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  65. 2025-03-25 08:48:05,457 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  66. 2025-03-25 08:48:05,457 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  67. 2025-03-25 08:48:05,457 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  68. 2025-03-25 08:48:05,457 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  69. 2025-03-25 08:48:05,457 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  70. 2025-03-25 08:48:05,457 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  71. 2025-03-25 08:48:05,669 - dbmg.py - INFO - ⚠️ 未找到模型 'fmi' 的有效记录 - get_keras_model_from_mongo
  72. 2025-03-25 08:48:05,670 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  73. 2025-03-25 08:48:13,323 - tf_lstm.py - INFO - -----模型训练经过28轮迭代----- - training
  74. 2025-03-25 08:48:13,323 - tf_lstm.py - INFO - 训练集损失函数为:[0.98709 0.4857 0.38789 0.34428 0.31769 0.2972 0.28397 0.27552 0.27048
  75. 0.26568 0.26268 0.2593 0.25744 0.25489 0.25417 0.25239 0.2496 0.25125
  76. 0.24856 0.2473 0.24671 0.24601 0.24413 0.24449 0.24437 0.24263 0.24266
  77. 0.24314] - training
  78. 2025-03-25 08:48:13,323 - tf_lstm.py - INFO - 验证集损失函数为:[0.61994 0.45012 0.40129 0.37275 0.3428 0.32806 0.32041 0.3169 0.31217
  79. 0.30889 0.30421 0.30505 0.30078 0.3012 0.29778 0.29507 0.29904 0.2944
  80. 0.30124 0.30423 0.31063 0.30335 0.30427 0.3074 0.30603 0.30948 0.30855
  81. 0.30437] - training
  82. 2025-03-25 08:48:13,364 - dbmg.py - INFO - ✅ 模型 fmi 保存成功 | 文档ID: 67e1fd4dce6f69e640c3ad38 - insert_trained_model_into_mongo
  83. 2025-03-25 08:48:13,394 - dbmg.py - INFO - ✅ 缩放器 fmi 保存成功 | 文档ID: 67e1fd4dce6f69e640c3ad3a - insert_scaler_model_into_mongo
  84. 2025-03-25 08:48:41,782 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  85. - _tfmw_add_deprecation_warning
  86. 2025-03-25 08:48:42,030 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-25 08:48:13) - get_scaler_model_from_mongo
  87. 2025-03-25 08:48:42,121 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  88. 2025-03-25 08:48:42,122 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmph1bvs151.keras - get_keras_model_from_mongo
  89. 2025-03-25 08:48:42,429 - tf_lstm.py - INFO - 执行预测方法 - predict
  90. 2025-03-25 09:02:04,620 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  91. - _tfmw_add_deprecation_warning
  92. 2025-03-25 10:11:55,993 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  93. - _tfmw_add_deprecation_warning
  94. 2025-03-25 10:11:56,189 - tf_lstm_train.py - INFO - Program starts execution! - model_training
  95. 2025-03-25 10:11:56,241 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  96. 2025-03-25 10:11:56,250 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubDireciton', 'HubSpeed'} - data_column_cleaning
  97. 2025-03-25 10:11:56,266 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
  98. 2025-03-25 10:11:56,275 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
  99. 2025-03-25 10:11:56,276 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
  100. 2025-03-25 10:11:56,308 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
  101. 2025-03-25 10:11:56,308 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  102. 2025-03-25 10:11:56,308 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  103. 2025-03-25 10:11:56,311 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
  104. 2025-03-25 10:11:56,311 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  105. 2025-03-25 10:11:56,311 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  106. 2025-03-25 10:11:56,314 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
  107. 2025-03-25 10:11:56,314 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
  108. 2025-03-25 10:11:56,320 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
  109. 2025-03-25 10:11:56,320 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  110. 2025-03-25 10:11:56,321 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
  111. 2025-03-25 10:11:56,321 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  112. 2025-03-25 10:11:56,322 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
  113. 2025-03-25 10:11:56,322 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  114. 2025-03-25 10:11:56,323 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
  115. 2025-03-25 10:11:56,323 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  116. 2025-03-25 10:11:56,324 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
  117. 2025-03-25 10:11:56,324 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  118. 2025-03-25 10:11:56,325 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
  119. 2025-03-25 10:11:56,325 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  120. 2025-03-25 10:11:56,326 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
  121. 2025-03-25 10:11:56,326 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
  122. 2025-03-25 10:11:56,326 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
  123. 2025-03-25 10:11:56,339 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
  124. 2025-03-25 10:11:56,339 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
  125. 2025-03-25 10:11:56,341 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
  126. 2025-03-25 10:11:56,341 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
  127. 2025-03-25 10:11:56,342 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
  128. 2025-03-25 10:11:56,342 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  129. 2025-03-25 10:11:56,343 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
  130. 2025-03-25 10:11:56,343 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  131. 2025-03-25 10:11:56,344 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
  132. 2025-03-25 10:11:56,344 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  133. 2025-03-25 10:11:56,345 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
  134. 2025-03-25 10:11:56,345 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  135. 2025-03-25 10:11:56,346 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
  136. 2025-03-25 10:11:56,348 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
  137. 2025-03-25 10:11:56,348 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
  138. 2025-03-25 10:11:56,350 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
  139. 2025-03-25 10:11:56,353 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
  140. 2025-03-25 10:11:56,354 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
  141. 2025-03-25 10:11:56,355 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  142. 2025-03-25 10:11:56,356 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  143. 2025-03-25 10:11:56,357 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  144. 2025-03-25 10:11:56,359 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  145. 2025-03-25 10:11:56,360 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  146. 2025-03-25 10:11:56,362 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
  147. 2025-03-25 10:11:56,363 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
  148. 2025-03-25 10:11:56,364 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
  149. 2025-03-25 10:11:56,365 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  150. 2025-03-25 10:11:56,366 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  151. 2025-03-25 10:11:56,367 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  152. 2025-03-25 10:11:56,367 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
  153. 2025-03-25 10:11:56,367 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
  154. 2025-03-25 10:11:58,824 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  155. 2025-03-25 10:11:58,824 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  156. 2025-03-25 10:11:58,825 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  157. 2025-03-25 10:11:58,825 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  158. 2025-03-25 10:11:58,825 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  159. 2025-03-25 10:11:58,825 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  160. 2025-03-25 10:11:58,825 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  161. 2025-03-25 10:11:58,825 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  162. 2025-03-25 10:11:59,017 - dbmg.py - INFO - ⚠️ 未找到模型 'fmi' 的有效记录 - get_keras_model_from_mongo
  163. 2025-03-25 10:11:59,017 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  164. 2025-03-25 10:12:22,986 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  165. - _tfmw_add_deprecation_warning
  166. 2025-03-25 10:12:23,176 - tf_lstm_train.py - INFO - Program starts execution! - model_training
  167. 2025-03-25 10:12:23,229 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  168. 2025-03-25 10:12:23,238 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubDireciton', 'HubSpeed'} - data_column_cleaning
  169. 2025-03-25 10:12:23,253 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
  170. 2025-03-25 10:12:23,263 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
  171. 2025-03-25 10:12:23,263 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
  172. 2025-03-25 10:12:23,296 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
  173. 2025-03-25 10:12:23,297 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  174. 2025-03-25 10:12:23,297 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  175. 2025-03-25 10:12:23,299 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
  176. 2025-03-25 10:12:23,299 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  177. 2025-03-25 10:12:23,299 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  178. 2025-03-25 10:12:23,302 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
  179. 2025-03-25 10:12:23,302 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
  180. 2025-03-25 10:12:23,308 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
  181. 2025-03-25 10:12:23,308 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  182. 2025-03-25 10:12:23,309 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
  183. 2025-03-25 10:12:23,309 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  184. 2025-03-25 10:12:23,310 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
  185. 2025-03-25 10:12:23,310 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  186. 2025-03-25 10:12:23,311 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
  187. 2025-03-25 10:12:23,311 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  188. 2025-03-25 10:12:23,312 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
  189. 2025-03-25 10:12:23,312 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  190. 2025-03-25 10:12:23,313 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
  191. 2025-03-25 10:12:23,313 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  192. 2025-03-25 10:12:23,314 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
  193. 2025-03-25 10:12:23,314 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
  194. 2025-03-25 10:12:23,314 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
  195. 2025-03-25 10:12:23,328 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
  196. 2025-03-25 10:12:23,328 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
  197. 2025-03-25 10:12:23,329 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
  198. 2025-03-25 10:12:23,329 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
  199. 2025-03-25 10:12:23,331 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
  200. 2025-03-25 10:12:23,331 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  201. 2025-03-25 10:12:23,332 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
  202. 2025-03-25 10:12:23,332 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  203. 2025-03-25 10:12:23,333 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
  204. 2025-03-25 10:12:23,333 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  205. 2025-03-25 10:12:23,334 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
  206. 2025-03-25 10:12:23,334 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  207. 2025-03-25 10:12:23,335 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
  208. 2025-03-25 10:12:23,335 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
  209. 2025-03-25 10:12:23,336 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
  210. 2025-03-25 10:12:23,337 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
  211. 2025-03-25 10:12:23,341 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
  212. 2025-03-25 10:12:23,343 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
  213. 2025-03-25 10:12:23,344 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  214. 2025-03-25 10:12:23,345 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  215. 2025-03-25 10:12:23,346 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  216. 2025-03-25 10:12:23,347 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  217. 2025-03-25 10:12:23,348 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  218. 2025-03-25 10:12:23,349 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
  219. 2025-03-25 10:12:23,350 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
  220. 2025-03-25 10:12:23,352 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
  221. 2025-03-25 10:12:23,353 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  222. 2025-03-25 10:12:23,354 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  223. 2025-03-25 10:12:23,355 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  224. 2025-03-25 10:12:23,356 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
  225. 2025-03-25 10:12:23,356 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
  226. 2025-03-25 10:12:25,819 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  227. 2025-03-25 10:12:25,819 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  228. 2025-03-25 10:12:25,820 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  229. 2025-03-25 10:12:25,820 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  230. 2025-03-25 10:12:25,820 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  231. 2025-03-25 10:12:25,820 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  232. 2025-03-25 10:12:25,820 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  233. 2025-03-25 10:12:25,820 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  234. 2025-03-25 10:12:26,012 - dbmg.py - INFO - ⚠️ 未找到模型 'fmi' 的有效记录 - get_keras_model_from_mongo
  235. 2025-03-25 10:12:26,012 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init