south-forecast.2025-03-12.0.log 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. 2025-03-12 08:33:54,280 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  2. 2025-03-12 08:34:12,481 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  3. 2025-03-12 08:34:44,794 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  4. 2025-03-12 08:34:48,826 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  5. 2025-03-12 08:35:18,502 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  6. 2025-03-12 08:36:58,641 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  7. 2025-03-12 08:37:56,560 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  8. 2025-03-12 08:38:35,572 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  9. 2025-03-12 08:39:21,276 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  10. 2025-03-12 08:40:49,875 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  11. 2025-03-12 08:41:26,419 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  12. 2025-03-12 08:42:36,685 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  13. 2025-03-12 08:44:24,362 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  14. 2025-03-12 08:45:06,742 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  15. 2025-03-12 08:45:06,852 - tf_lstm_train.py - INFO - Program starts execution! - model_training
  16. 2025-03-12 08:45:06,852 - tf_lstm_train.py - INFO - Program starts execution! - model_training
  17. 2025-03-12 08:45:06,864 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  18. 2025-03-12 08:45:06,864 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  19. 2025-03-12 08:45:06,870 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
  20. 2025-03-12 08:45:06,870 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
  21. 2025-03-12 08:45:06,881 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
  22. 2025-03-12 08:45:06,881 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
  23. 2025-03-12 08:45:06,881 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
  24. 2025-03-12 08:45:06,881 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
  25. 2025-03-12 08:45:06,914 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
  26. 2025-03-12 08:45:06,914 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
  27. 2025-03-12 08:45:06,915 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  28. 2025-03-12 08:45:06,915 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  29. 2025-03-12 08:45:06,915 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  30. 2025-03-12 08:45:06,915 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  31. 2025-03-12 08:45:06,916 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
  32. 2025-03-12 08:45:06,916 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
  33. 2025-03-12 08:45:06,917 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  34. 2025-03-12 08:45:06,917 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  35. 2025-03-12 08:45:06,917 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  36. 2025-03-12 08:45:06,917 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  37. 2025-03-12 08:45:06,920 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
  38. 2025-03-12 08:45:06,920 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
  39. 2025-03-12 08:45:06,920 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
  40. 2025-03-12 08:45:06,920 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
  41. 2025-03-12 08:45:06,925 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
  42. 2025-03-12 08:45:06,925 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
  43. 2025-03-12 08:45:06,925 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  44. 2025-03-12 08:45:06,925 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  45. 2025-03-12 08:45:06,926 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
  46. 2025-03-12 08:45:06,926 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
  47. 2025-03-12 08:45:06,926 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  48. 2025-03-12 08:45:06,926 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  49. 2025-03-12 08:45:06,926 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
  50. 2025-03-12 08:45:06,926 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
  51. 2025-03-12 08:45:06,927 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  52. 2025-03-12 08:45:06,927 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  53. 2025-03-12 08:45:06,927 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
  54. 2025-03-12 08:45:06,927 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
  55. 2025-03-12 08:45:06,927 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  56. 2025-03-12 08:45:06,927 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  57. 2025-03-12 08:45:06,928 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
  58. 2025-03-12 08:45:06,928 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
  59. 2025-03-12 08:45:06,928 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  60. 2025-03-12 08:45:06,928 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  61. 2025-03-12 08:45:06,929 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
  62. 2025-03-12 08:45:06,929 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
  63. 2025-03-12 08:45:06,929 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  64. 2025-03-12 08:45:06,929 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  65. 2025-03-12 08:45:06,930 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
  66. 2025-03-12 08:45:06,930 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
  67. 2025-03-12 08:45:06,930 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
  68. 2025-03-12 08:45:06,930 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
  69. 2025-03-12 08:45:06,930 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
  70. 2025-03-12 08:45:06,930 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
  71. 2025-03-12 08:45:06,943 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
  72. 2025-03-12 08:45:06,943 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
  73. 2025-03-12 08:45:06,943 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
  74. 2025-03-12 08:45:06,943 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
  75. 2025-03-12 08:45:06,944 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
  76. 2025-03-12 08:45:06,944 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
  77. 2025-03-12 08:45:06,944 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
  78. 2025-03-12 08:45:06,944 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
  79. 2025-03-12 08:45:06,945 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
  80. 2025-03-12 08:45:06,945 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
  81. 2025-03-12 08:45:06,946 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  82. 2025-03-12 08:45:06,946 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  83. 2025-03-12 08:45:06,946 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
  84. 2025-03-12 08:45:06,946 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
  85. 2025-03-12 08:45:06,946 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  86. 2025-03-12 08:45:06,946 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  87. 2025-03-12 08:45:06,947 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
  88. 2025-03-12 08:45:06,947 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
  89. 2025-03-12 08:45:06,947 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  90. 2025-03-12 08:45:06,947 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  91. 2025-03-12 08:45:06,947 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
  92. 2025-03-12 08:45:06,947 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
  93. 2025-03-12 08:45:06,947 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  94. 2025-03-12 08:45:06,947 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  95. 2025-03-12 08:45:06,948 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
  96. 2025-03-12 08:45:06,948 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
  97. 2025-03-12 08:45:06,948 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
  98. 2025-03-12 08:45:06,948 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
  99. 2025-03-12 08:45:06,949 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
  100. 2025-03-12 08:45:06,949 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
  101. 2025-03-12 08:45:09,257 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  102. 2025-03-12 08:45:09,257 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  103. 2025-03-12 08:45:09,257 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  104. 2025-03-12 08:45:09,257 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  105. 2025-03-12 08:45:09,257 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  106. 2025-03-12 08:45:09,257 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  107. 2025-03-12 08:45:09,257 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  108. 2025-03-12 08:45:09,257 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  109. 2025-03-12 08:45:09,257 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  110. 2025-03-12 08:45:09,257 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  111. 2025-03-12 08:45:09,257 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  112. 2025-03-12 08:45:09,257 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  113. 2025-03-12 08:45:09,257 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  114. 2025-03-12 08:45:09,257 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  115. 2025-03-12 08:45:09,258 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  116. 2025-03-12 08:45:09,258 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  117. 2025-03-12 08:45:14,704 - tf_lstm.py - INFO - -----模型训练经过19轮迭代----- - training
  118. 2025-03-12 08:45:14,704 - tf_lstm.py - INFO - -----模型训练经过19轮迭代----- - training
  119. 2025-03-12 08:45:14,705 - tf_lstm.py - INFO - 训练集损失函数为:[0.63415 0.26059 0.22963 0.22361 0.21993 0.21915 0.2187 0.21845 0.21829
  120. 0.21818 0.2181 0.21804 0.21799 0.21795 0.21791 0.21787 0.21784 0.21781
  121. 0.21779] - training
  122. 2025-03-12 08:45:14,705 - tf_lstm.py - INFO - 训练集损失函数为:[0.63415 0.26059 0.22963 0.22361 0.21993 0.21915 0.2187 0.21845 0.21829
  123. 0.21818 0.2181 0.21804 0.21799 0.21795 0.21791 0.21787 0.21784 0.21781
  124. 0.21779] - training
  125. 2025-03-12 08:45:14,705 - tf_lstm.py - INFO - 验证集损失函数为:[0.3779 0.29081 0.26585 0.26052 0.25942 0.25902 0.25886 0.25881 0.2588
  126. 0.25881 0.25883 0.25885 0.25888 0.2589 0.25892 0.25894 0.25896 0.25898
  127. 0.259 ] - training
  128. 2025-03-12 08:45:14,705 - tf_lstm.py - INFO - 验证集损失函数为:[0.3779 0.29081 0.26585 0.26052 0.25942 0.25902 0.25886 0.25881 0.2588
  129. 0.25881 0.25883 0.25885 0.25888 0.2589 0.25892 0.25894 0.25896 0.25898
  130. 0.259 ] - training
  131. 2025-03-12 08:45:14,706 - saving_api.py - WARNING - The `save_format` argument is deprecated in Keras 3. We recommend removing this argument as it can be inferred from the file path. Received: save_format=h5 - save_model
  132. 2025-03-12 08:45:14,706 - saving_api.py - WARNING - The `save_format` argument is deprecated in Keras 3. We recommend removing this argument as it can be inferred from the file path. Received: save_format=h5 - save_model
  133. 2025-03-12 08:45:14,706 - saving_api.py - WARNING - You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. - save_model
  134. 2025-03-12 08:45:14,706 - saving_api.py - WARNING - You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. - save_model
  135. 2025-03-12 08:46:41,315 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  136. 2025-03-12 08:47:43,615 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  137. 2025-03-12 08:52:20,117 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  138. 2025-03-12 08:52:20,294 - saving_utils.py - WARNING - Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model. - try_build_compiled_arguments
  139. 2025-03-12 08:52:20,294 - saving_utils.py - WARNING - Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model. - try_build_compiled_arguments
  140. 2025-03-12 08:52:20,595 - tf_lstm.py - INFO - 执行预测方法 - predict
  141. 2025-03-12 08:52:20,595 - tf_lstm.py - INFO - 执行预测方法 - predict
  142. 2025-03-12 08:52:52,426 - logs.py - INFO - 日志输出路径为:E:\compete\app\logs - getLogName
  143. 2025-03-12 08:52:52,579 - saving_utils.py - WARNING - Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model. - try_build_compiled_arguments
  144. 2025-03-12 08:52:52,579 - saving_utils.py - WARNING - Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model. - try_build_compiled_arguments
  145. 2025-03-12 08:52:52,869 - tf_lstm.py - INFO - 执行预测方法 - predict
  146. 2025-03-12 08:52:52,869 - tf_lstm.py - INFO - 执行预测方法 - predict