limited_power_solar.py 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131
  1. import pandas as pd
  2. import os
  3. import argparse
  4. import numpy as np
  5. np.random.seed(42)
  6. import matplotlib
  7. matplotlib.use('Agg')
  8. import matplotlib.pyplot as plt
  9. current_path = os.path.dirname(__file__)
  10. parent_path = os.path.dirname(current_path)
  11. class LimitPower(object):
  12. def __init__(self, logger, args, weather_power):
  13. self.logger = logger
  14. self.args = args
  15. self.opt = argparse.Namespace(**args)
  16. self.weather_power = weather_power
  17. def segment_statis(self):
  18. """
  19. 对总辐射-实际功率进行分段处理,获取分度的中位点,四分位间距和斜率
  20. :return: glob_rp 总辐射分段
  21. """
  22. segs = [x for x in range(50, 2000, 100)] # 对辐照度以100为间隔进行分段
  23. xs = [segs[i-1]+x if i>0 else 25 for i, x in enumerate([50 for _ in segs])] # 分段的中间点
  24. glob_rp = {} # dict: key 辐照度分段中间点 value 分段内的实际功率
  25. for index, row in self.weather_power.iterrows():
  26. glob_ = row[self.opt.usable_power_s["env"]]
  27. rp = row[self.opt.target]
  28. for i, seg in enumerate(segs):
  29. if glob_ <= seg and not (i > 0 and rp < 1):
  30. glob_rp.setdefault(xs[i], []).append(rp)
  31. break
  32. for i, x in enumerate(xs):
  33. rps = glob_rp.get(x)
  34. if rps is None:
  35. glob_rp = {k: v for k, v in glob_rp.items() if k not in xs[xs.index(x):]}
  36. break
  37. x_l = xs[i-1] if i > 0 else 0
  38. q2_l = glob_rp[xs[i-1]][0] if i > 0 else 0
  39. q1 = np.percentile(rps, self.opt.usable_power_s['down_fractile']) # 实际功率下四分位点
  40. q2 = np.percentile(rps, 50) # 实际功率中位点
  41. q3 = np.percentile(rps, self.opt.usable_power_s['up_fractile']) # 实际功率上四分位点
  42. iqr = q3 -q1 # 四分位间距
  43. k1 = round(q2/x, 5) # 整体斜率
  44. k2 = round((q2-q2_l)/(x-x_l), 5) # 趋势斜率,相对上一个中位点
  45. glob_rp[x] = [q2, iqr, k1, k2] # 更新dict
  46. return glob_rp
  47. def mapping_relation(self, glob_rp):
  48. """
  49. 拟合分段处理后的斜率和偏移量
  50. :param glob_rp: 总辐射分段
  51. :return: k_final 斜率 bias 实际功率的分布宽度, glob_rp 总辐射分段
  52. """
  53. ks, iqrs, delete_x, tag_x = [], [], [], [] # ks所有分段斜率集合,iqrs所有分段间距集合,delete_x删除的x坐标集合
  54. for x, values in glob_rp.items():
  55. k1 = values[-2]
  56. k2 = values[-1]
  57. iqrs.append(values[-3])
  58. if k1 > 0 and k2 > 0: # 清除趋势小于等于0的斜率
  59. ks.append(k1)
  60. tag_x.append(x)
  61. else:
  62. delete_x.append(x)
  63. # print("删除的斜率:", k1, k2)
  64. bias = round(np.median(iqrs), 3) # 中位点
  65. # print("++++1", ks)
  66. mean = np.mean(ks) # 均值
  67. std = np.std(ks) # 标准差
  68. ks = np.array(ks)
  69. z_score = (ks-mean)/std # z均值
  70. # print("----", z_score)
  71. outliers = np.abs(z_score) > self.opt.usable_power_s['outliers_threshold'] # 超过阈值为离群点
  72. ks = ks[~outliers] # 消除离群点
  73. delete_x1 = list(np.array(tag_x)[outliers]) # 清除大于阈值的离群点
  74. k_final = round(np.mean(ks), 5) # 对清洗后的斜率做平均
  75. # print("++++2:", ks)
  76. delete_x.extend(delete_x1)
  77. self.logger.info("拟合可用功率,删除的斜率:" + ' '.join([str(x) for x in delete_x]))
  78. glob_rp = {k: v for k, v in glob_rp.items() if k not in delete_x} # 清洗后剩下的分段点位
  79. return k_final, bias, glob_rp
  80. def filter_unlimited_power(self, zfs, real_power, k, b):
  81. """
  82. 预测可用功主方法
  83. :param zfs: 要预测可用功率的总辐射
  84. :param k: 斜率
  85. :param b: 偏移量
  86. :return: 预测的可用功率
  87. """
  88. high = k*zfs+b/2 if k*zfs+b/2 < self.opt.cap else self.opt.cap
  89. low = k*zfs-b/2 if k*zfs-b/2 > 0 else 0
  90. if low <= real_power <= high:
  91. return True
  92. else:
  93. return False
  94. def clean_limited_power(self, name, is_repair=False):
  95. if is_repair is True:
  96. glob_rp = self.segment_statis()
  97. k_final, bias, glob_rp = self.mapping_relation(glob_rp)
  98. self.opt.usable_power_s['k'] = float(k_final)
  99. self.opt.usable_power_s['bias'] = float(bias)
  100. new_weather_power = []
  101. for index, row in self.weather_power.iterrows():
  102. zfs = row[self.opt.usable_power_s["env"]]
  103. rp = row[self.opt.target]
  104. if self.filter_unlimited_power(zfs, rp, self.opt.usable_power_s['k'], self.opt.usable_power_s['bias'] * self.opt.usable_power_s['coe']):
  105. row['c'] = 'red'
  106. new_weather_power.append(row)
  107. else:
  108. row['c'] = 'blue'
  109. new_weather_power.append(row)
  110. new_weather_power = pd.concat(new_weather_power, axis=1).T
  111. new_weather_power.plot.scatter(x=self.opt.usable_power_s["env"], y='Power', c='c')
  112. plt.savefig(parent_path + '/figs/测光法{}.png'.format(name))
  113. new_weather_power = new_weather_power[new_weather_power['c'] == 'red']
  114. number = len(new_weather_power)
  115. self.logger.info("测光法-未清洗限电前,总共有:{}条数据".format(len(self.weather_power)))
  116. self.logger.info("测光法-清除限电后保留的点有:" + str(number) + " 占比:" + str(round(number / len(self.weather_power), 2)))
  117. return new_weather_power.loc[:, [self.opt.col_time, self.opt.target]]
  118. if __name__ == '__main__':
  119. power = pd.read_csv('2023-12-01至2023-12-23实际功率导出文件.csv', date_parser=['时间'])
  120. weather = pd.read_csv('2023-12-01至2023-12-23气象站数据导出文件.csv', date_parser=['时间'])
  121. weather_power = pd.merge(weather, power, on='时间') # 联立数据
  122. # glob_rp = segment_statis(weather_power)
  123. # k_final, bias, glob_rp = mapping_relation(glob_rp)