123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- #!/usr/bin/env python
- # -*- coding:utf-8 -*-
- # @FileName :tf_lstm_pre.py
- # @Time :2025/2/13 10:52
- # @Author :David
- # @Company: shenyang JY
- import os.path
- import numpy as np
- import logging, argparse, traceback
- from app.common.data_handler import DataHandler, write_number_to_file
- from threading import Lock
- import time, json
- model_lock = Lock()
- from itertools import chain
- from app.common.logs import logger, params
- from app.common.tf_fmi import FMIHandler
- from app.common.dbmg import MongoUtils
- np.random.seed(42) # NumPy随机种子
- dh = DataHandler(logger, params)
- fmi = FMIHandler(logger, params)
- mgUtils = MongoUtils(logger)
- def model_prediction(pre_data, input_file, cap):
- # 获取程序开始时间
- start_time = time.time()
- success = 0
- print("Program starts execution!")
- farm_id = input_file.split('/')[-2]
- output_file = input_file.replace('IN', 'OUT')
- file = 'DQYC_OUT_PREDICT_POWER.txt'
- status_file = 'STATUS.TXT'
- try:
- params['model_table'] += farm_id
- params['scaler_table'] += farm_id
- feature_scaler, target_scaler = mgUtils.get_scaler_model_from_mongo(params)
- fmi.opt.cap = round(target_scaler.transform(np.array([[cap]]))[0, 0], 2)
- fmi.get_model(params)
- dh.opt.features = json.loads(fmi.model_params).get('Model').get('features', ','.join(fmi.opt.features)).split(',')
- scaled_pre_x, pre_data = dh.pre_data_handler(pre_data, feature_scaler)
- success = 1
- # 更新算法状态:1. 启动成功
- write_number_to_file(os.path.join(output_file, status_file), 1, 1, 'rewrite')
- logger.info("算法启动成功")
- res = list(chain.from_iterable(target_scaler.inverse_transform([fmi.predict(scaled_pre_x).flatten()])))
- pre_data['Power'] = res[:len(pre_data)]
- pre_data['PlantID'] = farm_id
- pre_data = pre_data[['PlantID', params['col_time'], 'Power']]
- pre_data.loc[:, 'Power'] = pre_data['Power'].round(2)
- pre_data.loc[pre_data['Power'] > cap, 'Power'] = cap
- pre_data.loc[pre_data['Power'] < 0, 'Power'] = 0
- pre_data.to_csv(os.path.join(output_file, file), sep=' ', index=False)
- # 更新算法状态:正常结束
- write_number_to_file(os.path.join(output_file, status_file), 2, 2)
- logger.info("算法正常结束")
- except Exception as e:
- # 如果算法状态没启动,不更新
- if success:
- write_number_to_file(os.path.join(output_file, status_file), 2, 3)
- my_exception = traceback.format_exc()
- my_exception.replace("\n", "\t")
- result['msg'] = my_exception
- logger.info("算法状态异常:{}".format(my_exception))
- end_time = time.time()
- logger.info("fmi预测任务:用了 %s 秒 " % (end_time - start_time))
- if __name__ == "__main__":
- print("Program starts execution!")
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- logger = logging.getLogger("model_training_bp log")
- # serve(app, host="0.0.0.0", port=1010x, threads=4)
- print("server start!")
- # ------------------------测试代码------------------------
- args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
- 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083_test', 'col_time': 'date_time', 'mongodb_write_table': 'j00083_rs',
- 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
- args_dict['features'] = args_dict['features'].split(',')
- arguments.update(args_dict)
- dh = DataHandler(logger, arguments)
- ts = TSHandler(logger)
- opt = argparse.Namespace(**arguments)
- opt.Model['input_size'] = len(opt.features)
- pre_data = get_data_from_mongo(args_dict)
- feature_scaler, target_scaler = get_scaler_model_from_mongo(arguments)
- pre_x = dh.pre_data_handler(pre_data, feature_scaler, opt)
- ts.get_model(arguments)
- result = ts.predict(pre_x)
- result1 = list(chain.from_iterable(target_scaler.inverse_transform([result.flatten()])))
- pre_data['power_forecast'] = result1[:len(pre_data)]
- pre_data['farm_id'] = 'J00083'
- pre_data['cdq'] = 1
- pre_data['dq'] = 1
- pre_data['zq'] = 1
- pre_data.rename(columns={arguments['col_time']: 'date_time'}, inplace=True)
- pre_data = pre_data[['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']]
- pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
- pre_data.loc[pre_data['power_forecast'] > opt.cap, 'power_forecast'] = opt.cap
- pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
- insert_data_into_mongo(pre_data, arguments)
|