south-forecast.2025-03-25.0.log 9.7 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889
  1. 2025-03-25 08:48:02,492 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  2. - _tfmw_add_deprecation_warning
  3. 2025-03-25 08:48:02,832 - tf_lstm_train.py - INFO - Program starts execution! - model_training
  4. 2025-03-25 08:48:02,886 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
  5. 2025-03-25 08:48:02,895 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning
  6. 2025-03-25 08:48:02,913 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
  7. 2025-03-25 08:48:02,933 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
  8. 2025-03-25 08:48:02,933 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
  9. 2025-03-25 08:48:02,966 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
  10. 2025-03-25 08:48:02,966 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  11. 2025-03-25 08:48:02,966 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  12. 2025-03-25 08:48:02,967 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
  13. 2025-03-25 08:48:02,968 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
  14. 2025-03-25 08:48:02,968 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
  15. 2025-03-25 08:48:02,971 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
  16. 2025-03-25 08:48:02,971 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
  17. 2025-03-25 08:48:02,976 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
  18. 2025-03-25 08:48:02,977 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  19. 2025-03-25 08:48:02,978 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
  20. 2025-03-25 08:48:02,978 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  21. 2025-03-25 08:48:02,979 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
  22. 2025-03-25 08:48:02,979 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
  23. 2025-03-25 08:48:02,980 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
  24. 2025-03-25 08:48:02,980 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  25. 2025-03-25 08:48:02,981 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
  26. 2025-03-25 08:48:02,981 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  27. 2025-03-25 08:48:02,982 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
  28. 2025-03-25 08:48:02,982 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
  29. 2025-03-25 08:48:02,984 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
  30. 2025-03-25 08:48:02,984 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
  31. 2025-03-25 08:48:02,984 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
  32. 2025-03-25 08:48:02,997 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
  33. 2025-03-25 08:48:02,997 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
  34. 2025-03-25 08:48:02,999 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
  35. 2025-03-25 08:48:02,999 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
  36. 2025-03-25 08:48:03,000 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
  37. 2025-03-25 08:48:03,001 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  38. 2025-03-25 08:48:03,001 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
  39. 2025-03-25 08:48:03,001 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  40. 2025-03-25 08:48:03,002 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
  41. 2025-03-25 08:48:03,002 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  42. 2025-03-25 08:48:03,003 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
  43. 2025-03-25 08:48:03,003 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
  44. 2025-03-25 08:48:03,005 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
  45. 2025-03-25 08:48:03,005 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
  46. 2025-03-25 08:48:03,005 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
  47. 2025-03-25 08:48:03,014 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
  48. 2025-03-25 08:48:03,017 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
  49. 2025-03-25 08:48:03,019 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
  50. 2025-03-25 08:48:03,020 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  51. 2025-03-25 08:48:03,021 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
  52. 2025-03-25 08:48:03,022 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  53. 2025-03-25 08:48:03,023 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  54. 2025-03-25 08:48:03,024 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
  55. 2025-03-25 08:48:03,026 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
  56. 2025-03-25 08:48:03,027 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
  57. 2025-03-25 08:48:03,028 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
  58. 2025-03-25 08:48:03,029 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  59. 2025-03-25 08:48:03,031 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  60. 2025-03-25 08:48:03,032 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
  61. 2025-03-25 08:48:03,033 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
  62. 2025-03-25 08:48:03,033 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
  63. 2025-03-25 08:48:05,457 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  64. 2025-03-25 08:48:05,457 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  65. 2025-03-25 08:48:05,457 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  66. 2025-03-25 08:48:05,457 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  67. 2025-03-25 08:48:05,457 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  68. 2025-03-25 08:48:05,457 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  69. 2025-03-25 08:48:05,457 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
  70. 2025-03-25 08:48:05,457 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
  71. 2025-03-25 08:48:05,669 - dbmg.py - INFO - ⚠️ 未找到模型 'fmi' 的有效记录 - get_keras_model_from_mongo
  72. 2025-03-25 08:48:05,670 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
  73. 2025-03-25 08:48:13,323 - tf_lstm.py - INFO - -----模型训练经过28轮迭代----- - training
  74. 2025-03-25 08:48:13,323 - tf_lstm.py - INFO - 训练集损失函数为:[0.98709 0.4857 0.38789 0.34428 0.31769 0.2972 0.28397 0.27552 0.27048
  75. 0.26568 0.26268 0.2593 0.25744 0.25489 0.25417 0.25239 0.2496 0.25125
  76. 0.24856 0.2473 0.24671 0.24601 0.24413 0.24449 0.24437 0.24263 0.24266
  77. 0.24314] - training
  78. 2025-03-25 08:48:13,323 - tf_lstm.py - INFO - 验证集损失函数为:[0.61994 0.45012 0.40129 0.37275 0.3428 0.32806 0.32041 0.3169 0.31217
  79. 0.30889 0.30421 0.30505 0.30078 0.3012 0.29778 0.29507 0.29904 0.2944
  80. 0.30124 0.30423 0.31063 0.30335 0.30427 0.3074 0.30603 0.30948 0.30855
  81. 0.30437] - training
  82. 2025-03-25 08:48:13,364 - dbmg.py - INFO - ✅ 模型 fmi 保存成功 | 文档ID: 67e1fd4dce6f69e640c3ad38 - insert_trained_model_into_mongo
  83. 2025-03-25 08:48:13,394 - dbmg.py - INFO - ✅ 缩放器 fmi 保存成功 | 文档ID: 67e1fd4dce6f69e640c3ad3a - insert_scaler_model_into_mongo
  84. 2025-03-25 08:48:41,782 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
  85. - _tfmw_add_deprecation_warning
  86. 2025-03-25 08:48:42,030 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-25 08:48:13) - get_scaler_model_from_mongo
  87. 2025-03-25 08:48:42,121 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
  88. 2025-03-25 08:48:42,122 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmph1bvs151.keras - get_keras_model_from_mongo
  89. 2025-03-25 08:48:42,429 - tf_lstm.py - INFO - 执行预测方法 - predict