12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322 |
- 2025-05-22 11:00:08,282 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:00:08,613 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 11:00:11,212 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:00:14,107 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:00:14,110 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:00:14,392 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 11:00:14,401 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 11:00:14,415 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 11:00:14,419 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 11:00:14,423 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 11:00:14,427 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 11:00:14,463 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 11:00:14,463 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 11:00:14,463 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 11:00:14,463 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 11:00:14,464 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 11:00:14,464 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 11:00:15,484 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 11:00:15,484 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 11:00:15,485 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 11:00:15,485 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 11:00:28,458 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 11:00:28,458 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 11:00:28,458 - tf_lstm.py - INFO - 训练集损失函数为:[9.0069e-01 3.1528e-01 9.7720e-02 2.6780e-02 6.4900e-03 1.4300e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 11:00:28,458 - tf_lstm.py - INFO - 训练集损失函数为:[9.0124e-01 3.1763e-01 9.9520e-02 2.7860e-02 7.1800e-03 1.9800e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 11:00:28,459 - tf_lstm.py - INFO - 验证集损失函数为:[5.0957e-01 1.6535e-01 4.7580e-02 1.2060e-02 2.7500e-03 6.1000e-04
- 1.7000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 11:00:28,459 - tf_lstm.py - INFO - 验证集损失函数为:[0.51216 0.16791 0.0493 0.01325 0.00369 0.00147 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 11:00:28,518 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682e934cf784a6b4a7b99c0b - insert_trained_model_into_mongo
- 2025-05-22 11:00:28,528 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682e934c6e3c6f67919b8a61 - insert_trained_model_into_mongo
- 2025-05-22 11:00:28,553 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682e934c6e3c6f67919b8a63 - insert_scaler_model_into_mongo
- 2025-05-22 11:00:28,559 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682e934cf784a6b4a7b99c0d - insert_scaler_model_into_mongo
- 2025-05-22 11:00:29,840 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
- 2025-05-22 11:07:40,679 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:07:44,165 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 11:08:09,067 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:13:00,030 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:13:00,144 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 11:13:02,718 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:13:05,631 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:13:05,632 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 11:13:05,855 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 11:13:05,855 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 11:13:05,873 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 11:13:05,873 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 11:13:05,881 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 11:13:05,881 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 11:13:05,909 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 11:13:05,909 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 11:13:05,909 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 11:13:05,909 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 11:13:05,909 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 11:13:05,910 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 11:13:06,849 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 11:13:06,850 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 11:13:06,872 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 11:13:06,872 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 11:13:19,649 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 11:13:19,649 - tf_lstm.py - INFO - 训练集损失函数为:[9.0405e-01 3.1641e-01 9.7950e-02 2.6820e-02 6.5000e-03 1.4300e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 11:13:19,649 - tf_lstm.py - INFO - 验证集损失函数为:[5.1157e-01 1.6582e-01 4.7650e-02 1.2070e-02 2.7500e-03 6.1000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 11:13:19,659 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 11:13:19,660 - tf_lstm.py - INFO - 训练集损失函数为:[9.0396e-01 3.1831e-01 9.9550e-02 2.7800e-02 7.1400e-03 1.9600e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 11:13:19,660 - tf_lstm.py - INFO - 验证集损失函数为:[0.51355 0.16811 0.04924 0.01319 0.00367 0.00146 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 11:13:19,705 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682e964ff0d6786d32a727ec - insert_trained_model_into_mongo
- 2025-05-22 11:13:19,709 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682e964f3e4b222ab549997c - insert_trained_model_into_mongo
- 2025-05-22 11:13:19,728 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682e964ff0d6786d32a727ee - insert_scaler_model_into_mongo
- 2025-05-22 11:13:19,733 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682e964f3e4b222ab549997e - insert_scaler_model_into_mongo
- 2025-05-22 11:13:21,022 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
- 2025-05-22 13:06:09,682 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:06:09,939 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 13:06:12,715 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:06:15,661 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:06:15,662 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:06:15,932 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 13:06:15,932 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 13:06:15,959 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:06:15,959 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:06:15,967 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:06:15,968 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:06:16,004 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:06:16,004 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:06:16,005 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:06:16,005 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:06:16,005 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:06:16,005 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:06:17,007 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:06:17,007 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:06:17,007 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:06:17,007 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:06:29,989 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:06:29,990 - tf_lstm.py - INFO - 训练集损失函数为:[9.0225e-01 3.1749e-01 9.9030e-02 2.7310e-02 6.6500e-03 1.4700e-03
- 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 13:06:29,990 - tf_lstm.py - INFO - 验证集损失函数为:[0.50924 0.16612 0.04859 0.013 0.00362 0.00146 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 13:06:29,990 - tf_lstm.py - INFO - 验证集损失函数为:[5.1195e-01 1.6715e-01 4.8400e-02 1.2340e-02 2.8200e-03 6.2000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 13:06:30,043 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb0d6741733b69380e30e - insert_trained_model_into_mongo
- 2025-05-22 13:06:30,044 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb0d63e5e1c931e47042e - insert_trained_model_into_mongo
- 2025-05-22 13:06:30,052 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb0d6741733b69380e310 - insert_scaler_model_into_mongo
- 2025-05-22 13:06:30,052 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb0d63e5e1c931e470430 - insert_scaler_model_into_mongo
- 2025-05-22 13:06:31,384 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
- 2025-05-22 13:21:28,302 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:21:32,961 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 13:21:55,981 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:22:19,846 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:22:19,965 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:22:32,298 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 13:22:32,299 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 13:22:49,121 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:22:49,123 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:22:59,511 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:22:59,519 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:22:59,558 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:22:59,558 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:22:59,560 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:22:59,565 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:22:59,565 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:22:59,567 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:23:14,175 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:23:14,175 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:23:14,176 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:23:14,177 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:23:52,897 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:23:52,897 - tf_lstm.py - INFO - 训练集损失函数为:[9.0598e-01 3.1883e-01 9.9640e-02 2.7810e-02 7.1500e-03 1.9700e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 13:23:52,898 - tf_lstm.py - INFO - 验证集损失函数为:[0.51461 0.16825 0.04928 0.0132 0.00367 0.00147 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 13:23:52,944 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:23:52,945 - tf_lstm.py - INFO - 训练集损失函数为:[9.0190e-01 3.1699e-01 9.8690e-02 2.7170e-02 6.6100e-03 1.4600e-03
- 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 13:23:52,945 - tf_lstm.py - INFO - 验证集损失函数为:[5.1143e-01 1.6671e-01 4.8180e-02 1.2270e-02 2.8100e-03 6.3000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 13:23:58,957 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb4ee215b380c4e277f3d - insert_trained_model_into_mongo
- 2025-05-22 13:23:58,962 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb4eef0381e0011af450d - insert_trained_model_into_mongo
- 2025-05-22 13:23:58,970 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb4ee215b380c4e277f3f - insert_scaler_model_into_mongo
- 2025-05-22 13:23:58,987 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb4eef0381e0011af450f - insert_scaler_model_into_mongo
- 2025-05-22 13:25:06,867 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:25:10,017 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 13:25:33,151 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:25:56,908 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:25:56,915 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:31:51,198 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:31:51,314 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 13:31:53,876 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:31:56,769 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:31:56,769 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:31:56,973 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 13:31:56,974 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 13:31:56,992 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:31:56,993 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:31:57,000 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:31:57,001 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:31:57,027 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:31:57,027 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:31:57,028 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:31:57,028 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:31:57,029 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:31:57,029 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:31:57,948 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:31:57,949 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:31:57,957 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:31:57,958 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:32:10,777 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:32:10,778 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:32:10,778 - tf_lstm.py - INFO - 训练集损失函数为:[8.9570e-01 3.1407e-01 9.7760e-02 2.7200e-02 6.9900e-03 1.9300e-03
- 8.1000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 13:32:10,778 - tf_lstm.py - INFO - 训练集损失函数为:[9.0424e-01 3.1647e-01 9.8080e-02 2.6880e-02 6.5100e-03 1.4300e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 13:32:10,778 - tf_lstm.py - INFO - 验证集损失函数为:[0.5076 0.16537 0.04823 0.01291 0.0036 0.00145 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 13:32:10,778 - tf_lstm.py - INFO - 验证集损失函数为:[5.1157e-01 1.6595e-01 4.7750e-02 1.2100e-02 2.7500e-03 6.1000e-04
- 1.7000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 13:32:10,816 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb6daed827ab3f0037eb2 - insert_trained_model_into_mongo
- 2025-05-22 13:32:10,816 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb6dad7c91141fbffba57 - insert_trained_model_into_mongo
- 2025-05-22 13:32:10,848 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb6dad7c91141fbffba59 - insert_scaler_model_into_mongo
- 2025-05-22 13:32:10,863 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb6daed827ab3f0037eb4 - insert_scaler_model_into_mongo
- 2025-05-22 13:32:12,164 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
- 2025-05-22 13:36:17,718 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:36:17,835 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 13:36:20,536 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:36:23,520 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:36:23,524 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:36:23,730 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 13:36:23,730 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 13:36:23,748 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:36:23,748 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:36:23,757 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:36:23,757 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:36:23,784 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:36:23,784 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:36:23,785 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:36:23,786 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:36:23,786 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:36:23,787 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:36:24,750 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:36:24,751 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:36:24,755 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:36:24,755 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:36:37,674 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:36:37,674 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:36:37,675 - tf_lstm.py - INFO - 训练集损失函数为:[9.0215e-01 3.1682e-01 9.8480e-02 2.7050e-02 6.5600e-03 1.4400e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 13:36:37,675 - tf_lstm.py - INFO - 验证集损失函数为:[0.51142 0.16709 0.04888 0.01311 0.00366 0.00147 0.00102 0.00093 0.00091
- 0.0009 0.0009 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087
- 0.00087 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 13:36:37,675 - tf_lstm.py - INFO - 验证集损失函数为:[5.1143e-01 1.6646e-01 4.8020e-02 1.2190e-02 2.7800e-03 6.2000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 13:36:37,713 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb7e5627b101c684d84af - insert_trained_model_into_mongo
- 2025-05-22 13:36:37,720 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb7e5627b101c684d84b1 - insert_scaler_model_into_mongo
- 2025-05-22 13:36:37,736 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eb7e5c78eb332b44d57b5 - insert_trained_model_into_mongo
- 2025-05-22 13:36:37,757 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eb7e5c78eb332b44d57b7 - insert_scaler_model_into_mongo
- 2025-05-22 13:36:39,035 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
- 2025-05-22 13:43:10,995 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:43:14,416 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 13:43:37,750 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:44:04,231 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:44:04,235 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 13:45:28,979 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 13:45:28,979 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 13:45:29,000 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:45:29,001 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 13:45:29,028 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:45:29,029 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 13:45:29,071 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:45:29,072 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:45:29,073 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 13:45:29,073 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 13:45:29,074 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:45:29,075 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 13:45:31,139 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:45:31,140 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:45:31,142 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 13:45:31,143 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 13:46:07,442 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:46:07,442 - tf_lstm.py - INFO - 训练集损失函数为:[8.9715e-01 3.1446e-01 9.7490e-02 2.6710e-02 6.4700e-03 1.4300e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 13:46:07,443 - tf_lstm.py - INFO - 验证集损失函数为:[5.0805e-01 1.6497e-01 4.7450e-02 1.2030e-02 2.7400e-03 6.1000e-04
- 1.7000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 13:46:07,584 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 13:46:07,584 - tf_lstm.py - INFO - 训练集损失函数为:[8.9563e-01 3.1477e-01 9.8380e-02 2.7490e-02 7.0800e-03 1.9500e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 13:46:07,584 - tf_lstm.py - INFO - 验证集损失函数为:[0.50812 0.16611 0.04868 0.01307 0.00365 0.00146 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 13:46:14,116 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eba26770d6ffe7e22a033 - insert_trained_model_into_mongo
- 2025-05-22 13:46:14,120 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eba26d439ed5d688f8e53 - insert_trained_model_into_mongo
- 2025-05-22 13:46:14,129 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eba26770d6ffe7e22a035 - insert_scaler_model_into_mongo
- 2025-05-22 13:46:14,166 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eba26d439ed5d688f8e55 - insert_scaler_model_into_mongo
- 2025-05-22 14:22:14,267 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:22:14,388 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 14:22:17,074 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:22:19,916 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:22:22,871 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:22:22,872 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:22:23,608 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
- 2025-05-22 14:26:54,980 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:26:55,106 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 14:26:57,683 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:00,530 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:03,427 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:03,432 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:04,177 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
- 2025-05-22 14:27:41,884 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:42,000 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 14:27:44,598 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:47,308 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:50,203 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:50,204 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 14:27:50,954 - task_worker.py - ERROR - Area 1002 failed: Can only merge Series or DataFrame objects, a <class 'multiprocessing.managers.DictProxy'> was passed - region_task
- 2025-05-22 15:56:08,387 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 15:56:08,656 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 15:56:11,294 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 15:56:14,276 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 15:56:14,282 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 15:56:14,515 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 15:56:14,534 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 15:56:14,537 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 15:56:14,546 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 15:56:14,553 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 15:56:14,561 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 15:56:14,583 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 15:56:14,583 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 15:56:14,584 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 15:56:14,588 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 15:56:14,588 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 15:56:14,589 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 15:56:15,565 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 15:56:15,566 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 15:56:15,566 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 15:56:15,566 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 15:56:28,464 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 15:56:28,464 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 15:56:28,465 - tf_lstm.py - INFO - 训练集损失函数为:[8.9989e-01 3.1527e-01 9.8050e-02 2.7280e-02 7.0200e-03 1.9400e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 15:56:28,465 - tf_lstm.py - INFO - 训练集损失函数为:[9.0568e-01 3.1746e-01 9.8530e-02 2.7070e-02 6.5900e-03 1.4600e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 15:56:28,465 - tf_lstm.py - INFO - 验证集损失函数为:[0.50977 0.16589 0.04836 0.01296 0.00362 0.00146 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 15:56:28,465 - tf_lstm.py - INFO - 验证集损失函数为:[5.1289e-01 1.6660e-01 4.8030e-02 1.2220e-02 2.8000e-03 6.2000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 15:56:28,507 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ed8acd5726df85922d205 - insert_trained_model_into_mongo
- 2025-05-22 15:56:28,522 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ed8ac2e1adc5f49fe0f09 - insert_trained_model_into_mongo
- 2025-05-22 15:56:28,529 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ed8acd5726df85922d207 - insert_scaler_model_into_mongo
- 2025-05-22 15:56:28,543 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ed8ac2e1adc5f49fe0f0b - insert_scaler_model_into_mongo
- 2025-05-22 15:56:29,862 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
- 2025-05-22 15:57:07,940 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 15:57:08,055 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 15:57:10,632 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 15:57:13,508 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 15:57:13,518 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 15:57:13,711 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 15:57:13,718 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 15:57:13,729 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 15:57:13,736 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 15:57:13,737 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 15:57:13,744 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 15:57:13,770 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 15:57:13,770 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 15:57:13,770 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 15:57:13,776 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 15:57:13,776 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 15:57:13,777 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 15:57:14,694 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 15:57:14,694 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 15:57:14,712 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 15:57:14,713 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 15:57:27,628 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 15:57:27,628 - tf_lstm.py - INFO - 训练集损失函数为:[9.1627e-01 3.2273e-01 1.0049e-01 2.7670e-02 6.7300e-03 1.4900e-03
- 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 15:57:27,628 - tf_lstm.py - INFO - 验证集损失函数为:[5.2048e-01 1.6975e-01 4.9060e-02 1.2500e-02 2.8600e-03 6.3000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 15:57:27,654 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 15:57:27,655 - tf_lstm.py - INFO - 训练集损失函数为:[9.1329e-01 3.2208e-01 1.0066e-01 2.8050e-02 7.1900e-03 1.9700e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 15:57:27,655 - tf_lstm.py - INFO - 验证集损失函数为:[0.51954 0.17006 0.04973 0.01329 0.00368 0.00147 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 15:57:27,670 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ed8e7d0ad45b5ef1ff99f - insert_trained_model_into_mongo
- 2025-05-22 15:57:27,693 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ed8e7952fc3d26b39b369 - insert_trained_model_into_mongo
- 2025-05-22 15:57:27,698 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ed8e7d0ad45b5ef1ff9a1 - insert_scaler_model_into_mongo
- 2025-05-22 15:57:27,700 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ed8e7952fc3d26b39b36b - insert_scaler_model_into_mongo
- 2025-05-22 15:57:28,989 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
- 2025-05-22 16:00:26,751 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:02:27,969 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 16:02:51,521 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:03:20,174 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:03:20,244 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:03:43,812 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 16:03:43,818 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 16:03:43,837 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:03:43,843 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:03:43,869 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:03:43,874 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:03:43,915 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:03:43,916 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:03:43,918 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:03:43,920 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:03:43,920 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:03:43,922 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:03:45,818 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:03:45,820 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:03:45,842 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:03:45,842 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:04:23,192 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:04:23,193 - tf_lstm.py - INFO - 训练集损失函数为:[9.0817e-01 3.2013e-01 1.0016e-01 2.7980e-02 7.1900e-03 1.9700e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 16:04:23,192 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:04:23,193 - tf_lstm.py - INFO - 验证集损失函数为:[0.51636 0.16911 0.04957 0.01328 0.00369 0.00147 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
- 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 16:04:23,193 - tf_lstm.py - INFO - 训练集损失函数为:[9.0438e-01 3.1823e-01 9.9190e-02 2.7320e-02 6.6400e-03 1.4700e-03
- 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 16:04:23,193 - tf_lstm.py - INFO - 验证集损失函数为:[5.1324e-01 1.6746e-01 4.8450e-02 1.2330e-02 2.8200e-03 6.2000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 16:04:28,183 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eda8ce1472c691263abcd - insert_trained_model_into_mongo
- 2025-05-22 16:04:28,184 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eda8ca57967ec2470f538 - insert_trained_model_into_mongo
- 2025-05-22 16:04:28,234 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eda8ca57967ec2470f53a - insert_scaler_model_into_mongo
- 2025-05-22 16:04:28,235 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eda8ce1472c691263abcf - insert_scaler_model_into_mongo
- 2025-05-22 16:15:20,362 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:15:20,482 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 16:15:23,124 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:15:26,082 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:15:26,083 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:15:26,299 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 16:15:26,299 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 16:15:26,318 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:15:26,318 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:15:26,326 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:15:26,326 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:15:26,353 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:15:26,353 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:15:26,353 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:15:26,353 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:15:26,353 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:15:26,353 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:15:27,303 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:15:27,303 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:15:27,303 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:15:27,303 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:15:40,212 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:15:40,212 - tf_lstm.py - INFO - 训练集损失函数为:[9.0386e-01 3.1856e-01 9.9750e-02 2.7890e-02 7.1800e-03 1.9800e-03
- 8.3000e-04 6.0000e-04 5.5000e-04 5.5000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 16:15:40,212 - tf_lstm.py - INFO - 训练集损失函数为:[8.9587e-01 3.1399e-01 9.7500e-02 2.6790e-02 6.5000e-03 1.4400e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 16:15:40,212 - tf_lstm.py - INFO - 验证集损失函数为:[0.51364 0.16831 0.04936 0.01325 0.0037 0.00148 0.00101 0.00092 0.0009
- 0.0009 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087
- 0.00087 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 16:15:40,213 - tf_lstm.py - INFO - 验证集损失函数为:[5.0722e-01 1.6484e-01 4.7540e-02 1.2080e-02 2.7600e-03 6.1000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 16:15:40,256 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682edd2c58422a3c9f4e08aa - insert_trained_model_into_mongo
- 2025-05-22 16:15:40,266 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682edd2c1c34fc32963f2881 - insert_trained_model_into_mongo
- 2025-05-22 16:15:40,287 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682edd2c58422a3c9f4e08ac - insert_scaler_model_into_mongo
- 2025-05-22 16:15:40,289 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682edd2c1c34fc32963f2883 - insert_scaler_model_into_mongo
- 2025-05-22 16:15:41,578 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
- 2025-05-22 16:18:18,375 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:18:18,503 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 16:18:21,225 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:18:24,210 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:18:24,216 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:18:24,419 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 16:18:24,420 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 16:18:24,439 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:18:24,440 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:18:24,447 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:18:24,448 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:18:24,475 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:18:24,475 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:18:24,476 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:18:24,476 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:18:24,476 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:18:24,477 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:18:25,429 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:18:25,429 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:18:25,431 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:18:25,431 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:18:38,854 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:18:38,854 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:18:38,854 - tf_lstm.py - INFO - 训练集损失函数为:[8.9569e-01 3.1485e-01 9.8280e-02 2.7410e-02 7.0500e-03 1.9500e-03
- 8.2000e-04 6.0000e-04 5.6000e-04 5.5000e-04 5.5000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 16:18:38,855 - tf_lstm.py - INFO - 训练集损失函数为:[9.1019e-01 3.2047e-01 9.9880e-02 2.7530e-02 6.7100e-03 1.4800e-03
- 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 16:18:38,855 - tf_lstm.py - INFO - 验证集损失函数为:[0.50823 0.16598 0.0485 0.01302 0.00365 0.00147 0.00102 0.00093 0.00091
- 0.0009 0.0009 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087
- 0.00087 0.00087 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086
- 0.00086 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085
- 0.00085 0.00085 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 16:18:38,855 - tf_lstm.py - INFO - 验证集损失函数为:[5.1680e-01 1.6865e-01 4.8800e-02 1.2440e-02 2.8500e-03 6.3000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 16:18:38,892 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eddde166c956a98e4cdb6 - insert_trained_model_into_mongo
- 2025-05-22 16:18:38,903 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682eddde9239166b91e13257 - insert_trained_model_into_mongo
- 2025-05-22 16:18:38,910 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eddde9239166b91e13259 - insert_scaler_model_into_mongo
- 2025-05-22 16:18:38,924 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682eddde166c956a98e4cdb8 - insert_scaler_model_into_mongo
- 2025-05-22 16:19:36,327 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:19:36,452 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 16:19:39,140 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:19:42,056 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:19:42,056 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:19:42,261 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 16:19:42,261 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 16:19:42,279 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:19:42,279 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:19:42,287 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:19:42,287 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:19:42,316 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:19:42,316 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:19:42,317 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:19:42,317 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:19:42,317 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:19:42,317 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:19:43,248 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:19:43,249 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:19:43,261 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:19:43,261 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:19:56,132 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:19:56,132 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:19:56,133 - tf_lstm.py - INFO - 训练集损失函数为:[9.0371e-01 3.1890e-01 9.9980e-02 2.7980e-02 7.2000e-03 1.9800e-03
- 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 16:19:56,133 - tf_lstm.py - INFO - 验证集损失函数为:[0.51401 0.16865 0.04951 0.01329 0.0037 0.00147 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
- 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 16:19:56,133 - tf_lstm.py - INFO - 验证集损失函数为:[5.1199e-01 1.6678e-01 4.8120e-02 1.2220e-02 2.7800e-03 6.2000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 16:19:56,191 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ede2c6f86cd09523a290d - insert_trained_model_into_mongo
- 2025-05-22 16:19:56,191 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ede2c82774bd11b16d043 - insert_trained_model_into_mongo
- 2025-05-22 16:19:56,209 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ede2c6f86cd09523a290f - insert_scaler_model_into_mongo
- 2025-05-22 16:19:56,223 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ede2c82774bd11b16d045 - insert_scaler_model_into_mongo
- 2025-05-22 16:19:57,513 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
- 2025-05-22 16:23:41,614 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:23:47,120 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
- 2025-05-22 16:24:10,592 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:24:39,240 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:24:39,242 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
- - _tfmw_add_deprecation_warning
- 2025-05-22 16:24:39,724 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
- 2025-05-22 16:24:39,726 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
- 2025-05-22 16:24:39,745 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:24:39,748 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
- 2025-05-22 16:24:39,774 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:24:39,776 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
- 2025-05-22 16:24:39,816 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:24:39,816 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:24:39,817 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
- 2025-05-22 16:24:39,817 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
- 2025-05-22 16:24:39,819 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:24:39,819 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
- 2025-05-22 16:24:41,717 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:24:41,717 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:24:41,748 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
- 2025-05-22 16:24:41,748 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
- 2025-05-22 16:25:18,445 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:25:18,445 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
- 2025-05-22 16:25:18,445 - tf_lstm.py - INFO - 训练集损失函数为:[9.0181e-01 3.1616e-01 9.7980e-02 2.6830e-02 6.4900e-03 1.4300e-03
- 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
- 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
- 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
- 2025-05-22 16:25:18,445 - tf_lstm.py - INFO - 训练集损失函数为:[8.9533e-01 3.1324e-01 9.7340e-02 2.7070e-02 6.9500e-03 1.9200e-03
- 8.1000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
- 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
- 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
- 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
- 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
- 2025-05-22 16:25:18,446 - tf_lstm.py - INFO - 验证集损失函数为:[5.1082e-01 1.6583e-01 4.7670e-02 1.2070e-02 2.7500e-03 6.1000e-04
- 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
- 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
- 2025-05-22 16:25:18,446 - tf_lstm.py - INFO - 验证集损失函数为:[0.50668 0.16475 0.04801 0.01285 0.00359 0.00145 0.00101 0.00092 0.0009
- 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
- 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
- 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
- 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
- 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
- 0.00082] - training
- 2025-05-22 16:25:18,550 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682edf6e4f4d66c1538080fc - insert_trained_model_into_mongo
- 2025-05-22 16:25:18,562 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682edf6e4f4d66c1538080fe - insert_scaler_model_into_mongo
- 2025-05-22 16:25:18,564 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682edf6ee396be238e929ca2 - insert_trained_model_into_mongo
- 2025-05-22 16:25:18,576 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682edf6ee396be238e929ca4 - insert_scaler_model_into_mongo
|