2025-04-03 09:26:58,615 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead. - _tfmw_add_deprecation_warning 2025-04-03 09:26:58,902 - tf_fmi_train.py - INFO - Program starts execution! - model_training 2025-04-03 09:26:58,958 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning 2025-04-03 09:26:58,966 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubDireciton', 'HubSpeed'} - data_column_cleaning 2025-04-03 09:26:58,984 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning 2025-04-03 09:26:58,997 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite 2025-04-03 09:26:58,998 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite 2025-04-03 09:26:59,031 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite 2025-04-03 09:26:59,031 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite 2025-04-03 09:26:59,031 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite 2025-04-03 09:26:59,033 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite 2025-04-03 09:26:59,033 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite 2025-04-03 09:26:59,033 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite 2025-04-03 09:26:59,036 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite 2025-04-03 09:26:59,037 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite 2025-04-03 09:26:59,042 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite 2025-04-03 09:26:59,042 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite 2025-04-03 09:26:59,043 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite 2025-04-03 09:26:59,043 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite 2025-04-03 09:26:59,044 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite 2025-04-03 09:26:59,044 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite 2025-04-03 09:26:59,045 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite 2025-04-03 09:26:59,046 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite 2025-04-03 09:26:59,046 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite 2025-04-03 09:26:59,046 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite 2025-04-03 09:26:59,047 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite 2025-04-03 09:26:59,048 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite 2025-04-03 09:26:59,048 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite 2025-04-03 09:26:59,049 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite 2025-04-03 09:26:59,049 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite 2025-04-03 09:26:59,062 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite 2025-04-03 09:26:59,062 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite 2025-04-03 09:26:59,063 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite 2025-04-03 09:26:59,063 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite 2025-04-03 09:26:59,065 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite 2025-04-03 09:26:59,065 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite 2025-04-03 09:26:59,066 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite 2025-04-03 09:26:59,066 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite 2025-04-03 09:26:59,066 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite 2025-04-03 09:26:59,066 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite 2025-04-03 09:26:59,067 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite 2025-04-03 09:26:59,068 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite 2025-04-03 09:26:59,068 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite 2025-04-03 09:26:59,068 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite 2025-04-03 09:26:59,070 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data 2025-04-03 09:26:59,075 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill 2025-04-03 09:26:59,079 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill 2025-04-03 09:26:59,081 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill 2025-04-03 09:26:59,082 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill 2025-04-03 09:26:59,083 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill 2025-04-03 09:26:59,084 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill 2025-04-03 09:26:59,085 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill 2025-04-03 09:26:59,086 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill 2025-04-03 09:26:59,088 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill 2025-04-03 09:26:59,089 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill 2025-04-03 09:26:59,090 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill 2025-04-03 09:26:59,091 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill 2025-04-03 09:26:59,092 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill 2025-04-03 09:26:59,093 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill 2025-04-03 09:26:59,094 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill 2025-04-03 09:26:59,094 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill 2025-04-03 09:27:01,585 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data 2025-04-03 09:27:01,586 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data 2025-04-03 09:27:01,919 - dbmg.py - INFO - ❌ 系统异常: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - get_keras_model_from_mongo 2025-04-03 09:27:01,920 - tf_fmi.py - INFO - 加强训练加载模型权重失败:("Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}",) - train_init 2025-04-03 09:27:14,119 - tf_fmi.py - INFO - -----模型训练经过31轮迭代----- - training 2025-04-03 09:27:14,120 - tf_fmi.py - INFO - 训练集损失函数为:[53.51689 30.66457 18.66789 11.65896 7.50273 4.84363 3.09119 1.95949 1.25144 0.82907 0.58984 0.46101 0.39091 0.3534 0.33623 0.32777 0.31812 0.31297 0.30957 0.30708 0.30657 0.30585 0.30357 0.30433 0.30124 0.30502 0.29952 0.30102 0.30003 0.29883 0.30341] - training 2025-04-03 09:27:14,120 - tf_fmi.py - INFO - 验证集损失函数为:[33.29909 22.46415 14.20688 9.14478 5.98742 3.91006 2.55501 1.67482 1.12169 0.7885 0.59235 0.48276 0.42948 0.41301 0.37812 0.35537 0.35367 0.35108 0.34602 0.34273 0.33807 0.34047 0.33835 0.33889 0.34738 0.34364 0.34219 0.34872 0.34872 0.34948 0.3491 ] - training 2025-04-03 09:27:14,206 - dbmg.py - INFO - ❌ 数据库操作 - 详细错误: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - insert_trained_model_into_mongo 2025-04-03 09:29:33,755 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead. - _tfmw_add_deprecation_warning 2025-04-03 09:29:33,856 - tf_fmi_train.py - INFO - Program starts execution! - model_training 2025-04-03 09:29:33,912 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning 2025-04-03 09:29:33,921 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning 2025-04-03 09:29:33,936 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning 2025-04-03 09:29:33,946 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite 2025-04-03 09:29:33,946 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite 2025-04-03 09:29:33,980 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite 2025-04-03 09:29:33,981 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite 2025-04-03 09:29:33,981 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite 2025-04-03 09:29:33,982 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite 2025-04-03 09:29:33,982 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite 2025-04-03 09:29:33,982 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite 2025-04-03 09:29:33,986 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite 2025-04-03 09:29:33,986 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite 2025-04-03 09:29:33,991 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite 2025-04-03 09:29:33,991 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite 2025-04-03 09:29:33,992 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite 2025-04-03 09:29:33,992 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite 2025-04-03 09:29:33,993 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite 2025-04-03 09:29:33,993 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite 2025-04-03 09:29:33,994 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite 2025-04-03 09:29:33,994 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite 2025-04-03 09:29:33,995 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite 2025-04-03 09:29:33,995 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite 2025-04-03 09:29:33,996 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite 2025-04-03 09:29:33,996 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite 2025-04-03 09:29:33,997 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite 2025-04-03 09:29:33,997 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite 2025-04-03 09:29:33,997 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite 2025-04-03 09:29:34,011 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite 2025-04-03 09:29:34,011 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite 2025-04-03 09:29:34,013 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite 2025-04-03 09:29:34,013 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite 2025-04-03 09:29:34,014 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite 2025-04-03 09:29:34,015 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite 2025-04-03 09:29:34,016 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite 2025-04-03 09:29:34,016 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite 2025-04-03 09:29:34,016 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite 2025-04-03 09:29:34,016 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite 2025-04-03 09:29:34,017 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite 2025-04-03 09:29:34,017 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite 2025-04-03 09:29:34,018 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite 2025-04-03 09:29:34,018 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite 2025-04-03 09:29:34,020 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data 2025-04-03 09:29:34,021 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:34,024 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill 2025-04-03 09:29:34,026 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:34,026 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:34,028 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:34,028 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:34,030 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:34,031 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:34,033 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill 2025-04-03 09:29:34,034 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:34,035 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:34,036 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:34,037 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:34,038 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:34,039 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:34,039 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill 2025-04-03 09:29:53,779 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead. - _tfmw_add_deprecation_warning 2025-04-03 09:29:53,878 - tf_fmi_train.py - INFO - Program starts execution! - model_training 2025-04-03 09:29:53,935 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning 2025-04-03 09:29:53,944 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning 2025-04-03 09:29:53,959 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning 2025-04-03 09:29:53,969 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite 2025-04-03 09:29:53,969 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite 2025-04-03 09:29:54,003 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite 2025-04-03 09:29:54,003 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite 2025-04-03 09:29:54,003 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite 2025-04-03 09:29:54,005 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite 2025-04-03 09:29:54,005 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite 2025-04-03 09:29:54,005 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite 2025-04-03 09:29:54,009 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite 2025-04-03 09:29:54,009 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite 2025-04-03 09:29:54,014 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite 2025-04-03 09:29:54,014 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite 2025-04-03 09:29:54,016 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite 2025-04-03 09:29:54,016 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite 2025-04-03 09:29:54,017 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite 2025-04-03 09:29:54,017 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite 2025-04-03 09:29:54,018 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite 2025-04-03 09:29:54,018 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite 2025-04-03 09:29:54,019 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite 2025-04-03 09:29:54,019 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite 2025-04-03 09:29:54,020 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite 2025-04-03 09:29:54,020 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite 2025-04-03 09:29:54,021 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite 2025-04-03 09:29:54,021 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite 2025-04-03 09:29:54,021 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite 2025-04-03 09:29:54,035 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite 2025-04-03 09:29:54,035 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite 2025-04-03 09:29:54,036 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite 2025-04-03 09:29:54,036 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite 2025-04-03 09:29:54,038 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite 2025-04-03 09:29:54,039 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite 2025-04-03 09:29:54,039 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite 2025-04-03 09:29:54,040 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite 2025-04-03 09:29:54,040 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite 2025-04-03 09:29:54,041 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite 2025-04-03 09:29:54,041 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite 2025-04-03 09:29:54,042 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite 2025-04-03 09:29:54,042 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite 2025-04-03 09:29:54,042 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite 2025-04-03 09:29:54,043 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data 2025-04-03 09:29:54,045 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:54,048 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill 2025-04-03 09:29:54,049 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:54,051 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:54,052 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:54,053 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:54,054 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:54,055 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:54,057 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill 2025-04-03 09:29:54,058 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:54,060 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:54,061 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:54,062 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:54,063 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:54,064 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill 2025-04-03 09:29:54,064 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data 2025-04-03 09:29:56,533 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data 2025-04-03 09:29:56,751 - dbmg.py - INFO - ❌ 系统异常: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - get_keras_model_from_mongo 2025-04-03 09:29:56,751 - tf_fmi.py - INFO - 加强训练加载模型权重失败:("Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}",) - train_init 2025-04-03 09:30:07,199 - tf_fmi.py - INFO - -----模型训练经过26轮迭代----- - training 2025-04-03 09:30:07,199 - tf_fmi.py - INFO - 训练集损失函数为:[51.47301 28.56529 17.00252 10.45491 6.56836 4.06275 2.4503 1.46647 0.90028 0.59797 0.44225 0.36502 0.32612 0.30597 0.29727 0.29397 0.29415 0.29314 0.29399 0.29276 0.29808 0.29488 0.29392 0.29338 0.29251 0.2949 ] - training 2025-04-03 09:30:07,199 - tf_fmi.py - INFO - 验证集损失函数为:[32.08155 20.83876 12.88028 8.15244 5.13598 3.18782 1.98071 1.25191 0.83589 0.59431 0.47115 0.4052 0.37547 0.36021 0.34598 0.33878 0.35231 0.35726 0.3452 0.35579 0.36291 0.3551 0.35916 0.3541 0.34667 0.35812] - training 2025-04-03 09:30:07,261 - dbmg.py - INFO - ❌ 数据库操作 - 详细错误: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - insert_trained_model_into_mongo 2025-04-03 13:33:12,420 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead. - _tfmw_add_deprecation_warning 2025-04-03 13:33:12,613 - tf_cnn_train.py - INFO - Program starts execution! - model_training 2025-04-03 13:33:12,674 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning 2025-04-03 13:33:12,683 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning 2025-04-03 13:33:12,700 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning 2025-04-03 13:33:12,721 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite 2025-04-03 13:33:12,721 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite 2025-04-03 13:33:12,754 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite 2025-04-03 13:33:12,754 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite 2025-04-03 13:33:12,754 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite 2025-04-03 13:33:12,756 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite 2025-04-03 13:33:12,756 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite 2025-04-03 13:33:12,756 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite 2025-04-03 13:33:12,760 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite 2025-04-03 13:33:12,760 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite 2025-04-03 13:33:12,765 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite 2025-04-03 13:33:12,765 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite 2025-04-03 13:33:12,767 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite 2025-04-03 13:33:12,767 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite 2025-04-03 13:33:12,768 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite 2025-04-03 13:33:12,768 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite 2025-04-03 13:33:12,769 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite 2025-04-03 13:33:12,769 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite 2025-04-03 13:33:12,770 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite 2025-04-03 13:33:12,770 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite 2025-04-03 13:33:12,772 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite 2025-04-03 13:33:12,772 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite 2025-04-03 13:33:12,773 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite 2025-04-03 13:33:12,773 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite 2025-04-03 13:33:12,773 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite 2025-04-03 13:33:12,785 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite 2025-04-03 13:33:12,785 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite 2025-04-03 13:33:12,787 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite 2025-04-03 13:33:12,788 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite 2025-04-03 13:33:12,789 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite 2025-04-03 13:33:12,789 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite 2025-04-03 13:33:12,790 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite 2025-04-03 13:33:12,790 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite 2025-04-03 13:33:12,791 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite 2025-04-03 13:33:12,791 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite 2025-04-03 13:33:12,792 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite 2025-04-03 13:33:12,792 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite 2025-04-03 13:33:12,793 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite 2025-04-03 13:33:12,793 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite 2025-04-03 13:33:12,793 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data 2025-04-03 13:33:12,795 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill 2025-04-03 13:33:12,799 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill 2025-04-03 13:33:12,800 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill 2025-04-03 13:33:12,801 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill 2025-04-03 13:33:12,802 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill 2025-04-03 13:33:12,803 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill 2025-04-03 13:33:12,804 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill 2025-04-03 13:33:12,805 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill 2025-04-03 13:33:12,807 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill 2025-04-03 13:33:12,808 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill 2025-04-03 13:33:12,809 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill 2025-04-03 13:33:12,810 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill 2025-04-03 13:33:12,811 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill 2025-04-03 13:33:12,812 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill 2025-04-03 13:33:12,813 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill 2025-04-03 13:33:12,813 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill 2025-04-03 13:33:15,280 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data 2025-04-03 13:33:15,281 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data 2025-04-03 13:33:15,493 - dbmg.py - INFO - ❌ 系统异常: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - get_keras_model_from_mongo 2025-04-03 13:33:15,493 - tf_cnn.py - INFO - 加强训练加载模型权重失败:("Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}",) - train_init 2025-04-03 13:33:26,756 - tf_cnn.py - INFO - -----模型训练经过76轮迭代----- - training 2025-04-03 13:33:26,756 - tf_cnn.py - INFO - 训练集损失函数为:[5.3196 2.96034 1.83915 1.399 1.15213 0.97754 0.84255 0.73772 0.66046 0.60034 0.55292 0.51518 0.48333 0.45676 0.43364 0.41425 0.39769 0.3834 0.37138 0.36097 0.35203 0.3447 0.33776 0.33146 0.32607 0.32143 0.31722 0.31405 0.31122 0.30854 0.306 0.30391 0.30194 0.30016 0.29861 0.29733 0.29619 0.29507 0.29394 0.29281 0.2917 0.29055 0.28939 0.28831 0.28746 0.28662 0.28581 0.285 0.2843 0.28371 0.28309 0.28248 0.28181 0.28114 0.28057 0.28002 0.27949 0.27907 0.27876 0.27847 0.27816 0.27786 0.27756 0.27726 0.27697 0.27668 0.27638 0.27609 0.27581 0.27552 0.27525 0.27498 0.27482 0.27454 0.27427 0.27401] - training 2025-04-03 13:33:26,757 - tf_cnn.py - INFO - 验证集损失函数为:[3.92513 2.23538 1.60418 1.28774 1.08642 0.93493 0.81426 0.72426 0.65625 0.6028 0.5611 0.52649 0.49804 0.47311 0.45227 0.43444 0.41905 0.40589 0.39496 0.38506 0.37721 0.36995 0.3632 0.35745 0.35234 0.3479 0.34436 0.34159 0.33884 0.33624 0.33404 0.33224 0.33051 0.32884 0.32741 0.32638 0.32527 0.32424 0.32322 0.32202 0.32096 0.3199 0.31874 0.31774 0.31694 0.31608 0.31535 0.31433 0.31367 0.31316 0.31234 0.3115 0.31067 0.30995 0.30914 0.30852 0.30783 0.30739 0.30679 0.30646 0.30603 0.30568 0.30537 0.3051 0.30508 0.3049 0.30503 0.30513 0.30515 0.30524 0.3053 0.30525 0.30495 0.30523 0.30534 0.30523] - training 2025-04-03 13:33:26,794 - dbmg.py - INFO - ❌ 数据库操作 - 详细错误: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - insert_trained_model_into_mongo 2025-04-03 13:51:00,688 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead. - _tfmw_add_deprecation_warning 2025-04-03 13:51:26,825 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead. - _tfmw_add_deprecation_warning 2025-04-03 13:51:26,937 - tf_cnn_pre.py - INFO - 算法状态异常:Traceback (most recent call last): File "E:\compete\app\common\dbmg.py", line 436, in get_scaler_model_from_mongo scaler_doc = collection.find_one( ^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\collection.py", line 1495, in find_one for result in cursor.limit(-1): File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1243, in next if len(self.__data) or self._refresh(): ^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1160, in _refresh self.__send_message(q) File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1039, in __send_message response = client._run_operation( ^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\_csot.py", line 108, in csot_wrapper return func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1425, in _run_operation return self._retryable_read( ^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1534, in _retryable_read return self._retry_internal( ^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\_csot.py", line 108, in csot_wrapper return func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1501, in _retry_internal ).run() ^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 2347, in run return self._read() if self._is_read else self._write() ^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 2479, in _read with self._client._conn_from_server(self._read_pref, self._server, self._session) as ( File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__ return next(self.gen) ^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1351, in _conn_from_server with self._checkout(server, session) as conn: File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__ return next(self.gen) ^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1260, in _checkout with server.checkout(handler=err_handler) as conn: File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__ return next(self.gen) ^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1763, in checkout conn = self._get_conn(checkout_started_time, handler=handler) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1921, in _get_conn conn = self.connect(handler=handler) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1725, in connect conn.authenticate() File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1098, in authenticate auth.authenticate(creds, self, reauthenticate=reauthenticate) File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 656, in authenticate auth_func(credentials, conn) File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 560, in _authenticate_default return _authenticate_scram(credentials, conn, "SCRAM-SHA-1") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 299, in _authenticate_scram res = conn.command(source, cmd) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\helpers.py", line 342, in inner return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 988, in command return command( ^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\network.py", line 212, in command helpers._check_command_response( File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\helpers.py", line 248, in _check_command_response raise OperationFailure(errmsg, code, response, max_wire_version) pymongo.errors.OperationFailure: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} The above exception was the direct cause of the following exception: Traceback (most recent call last): File "E:\compete\app\predict\tf_cnn_pre.py", line 41, in model_prediction feature_scaler, target_scaler = mgUtils.get_scaler_model_from_mongo(params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\compete\app\common\dbmg.py", line 474, in get_scaler_model_from_mongo raise RuntimeError(f"🔌 数据库操作失败: {str(e)}") from e RuntimeError: 🔌 数据库操作失败: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - model_prediction 2025-04-03 13:51:26,942 - tf_cnn_pre.py - INFO - cnn预测任务:用了 0.01752614974975586 秒 - model_prediction 2025-04-03 13:59:47,178 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead. - _tfmw_add_deprecation_warning 2025-04-03 13:59:47,295 - tf_cnn_pre.py - INFO - 算法状态异常:Traceback (most recent call last): File "E:\compete\app\common\dbmg.py", line 436, in get_scaler_model_from_mongo scaler_doc = collection.find_one( ^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\collection.py", line 1495, in find_one for result in cursor.limit(-1): File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1243, in next if len(self.__data) or self._refresh(): ^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1160, in _refresh self.__send_message(q) File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\cursor.py", line 1039, in __send_message response = client._run_operation( ^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\_csot.py", line 108, in csot_wrapper return func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1425, in _run_operation return self._retryable_read( ^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1534, in _retryable_read return self._retry_internal( ^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\_csot.py", line 108, in csot_wrapper return func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1501, in _retry_internal ).run() ^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 2347, in run return self._read() if self._is_read else self._write() ^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 2479, in _read with self._client._conn_from_server(self._read_pref, self._server, self._session) as ( File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__ return next(self.gen) ^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1351, in _conn_from_server with self._checkout(server, session) as conn: File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__ return next(self.gen) ^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\mongo_client.py", line 1260, in _checkout with server.checkout(handler=err_handler) as conn: File "D:\anaconda3\envs\py312\Lib\contextlib.py", line 137, in __enter__ return next(self.gen) ^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1763, in checkout conn = self._get_conn(checkout_started_time, handler=handler) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1921, in _get_conn conn = self.connect(handler=handler) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1725, in connect conn.authenticate() File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 1098, in authenticate auth.authenticate(creds, self, reauthenticate=reauthenticate) File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 656, in authenticate auth_func(credentials, conn) File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 560, in _authenticate_default return _authenticate_scram(credentials, conn, "SCRAM-SHA-1") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\auth.py", line 299, in _authenticate_scram res = conn.command(source, cmd) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\helpers.py", line 342, in inner return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\pool.py", line 988, in command return command( ^^^^^^^^ File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\network.py", line 212, in command helpers._check_command_response( File "D:\anaconda3\envs\py312\Lib\site-packages\pymongo\helpers.py", line 248, in _check_command_response raise OperationFailure(errmsg, code, response, max_wire_version) pymongo.errors.OperationFailure: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} The above exception was the direct cause of the following exception: Traceback (most recent call last): File "E:\compete\app\predict\tf_cnn_pre.py", line 41, in model_prediction feature_scaler, target_scaler = mgUtils.get_scaler_model_from_mongo(params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\compete\app\common\dbmg.py", line 474, in get_scaler_model_from_mongo raise RuntimeError(f"🔌 数据库操作失败: {str(e)}") from e RuntimeError: 🔌 数据库操作失败: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'} - model_prediction 2025-04-03 13:59:47,299 - tf_cnn_pre.py - INFO - cnn预测任务:用了 0.01714491844177246 秒 - model_prediction