#!/usr/bin/env python # -*- coding:utf-8 -*- # @FileName :tf_lstm.py # @Time :2025/2/12 14:03 # @Author :David # @Company: shenyang JY from tensorflow.keras.layers import Input, Dense, LSTM, Conv1D, MaxPooling1D from tensorflow.keras.models import Model from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras import optimizers, regularizers from app.model.losses import region_loss import numpy as np from app.common.dbmg import MongoUtils # from app.model.losses import rmse from threading import Lock import argparse model_lock = Lock() class TSHandler(object): def __init__(self, logger, args): self.logger = logger self.opt = args.parse_args_and_yaml() self.model = None self.model_params = None self.mongoUtils = MongoUtils(logger) def get_model(self, args): """ 单例模式+线程锁,防止在异步加载时引发线程安全 """ try: with model_lock: loss = region_loss(self.opt) self.model, self.model_params = self.mongoUtils.get_keras_model_from_mongo(args, {type(loss).__name__: loss}) except Exception as e: self.logger.info("加载模型权重失败:{}".format(e.args)) @staticmethod def get_keras_model(opt): loss = region_loss(opt) l1_reg = regularizers.l1(opt.Model['lambda_value_1']) l2_reg = regularizers.l2(opt.Model['lambda_value_2']) nwp_input = Input(shape=(opt.Model['time_step'], opt.Model['input_size']), name='nwp') con1 = Conv1D(filters=64, kernel_size=5, strides=1, padding='valid', activation='relu', kernel_regularizer=l2_reg)(nwp_input) con1_p = MaxPooling1D(pool_size=5, strides=1, padding='valid', data_format='channels_last')(con1) nwp_lstm = LSTM(units=opt.Model['hidden_size'], return_sequences=False, kernel_regularizer=l2_reg)(con1_p) output = Dense(opt.Model['output_size'], name='cdq_output')(nwp_lstm) model = Model(nwp_input, output) adam = optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=True) model.compile(loss=loss, optimizer=adam) return model def train_init(self): try: # 进行加强训练,支持修模 loss = region_loss(self.opt) base_train_model, self.model_params = self.mongoUtils.get_keras_model_from_mongo(vars(self.opt), {type(loss).__name__: loss}) base_train_model.summary() self.logger.info("已加载加强训练基础模型") return base_train_model except Exception as e: self.logger.info("加强训练加载模型权重失败:{}".format(e.args)) return False def training(self, model, train_and_valid_data): model.summary() train_x, train_y, valid_x, valid_y = train_and_valid_data early_stop = EarlyStopping(monitor='val_loss', patience=self.opt.Model['patience'], mode='auto') history = model.fit(train_x, train_y, batch_size=self.opt.Model['batch_size'], epochs=self.opt.Model['epoch'], verbose=2, validation_data=(valid_x, valid_y), callbacks=[early_stop], shuffle=False) loss = np.round(history.history['loss'], decimals=5) val_loss = np.round(history.history['val_loss'], decimals=5) self.logger.info("-----模型训练经过{}轮迭代-----".format(len(loss))) self.logger.info("训练集损失函数为:{}".format(loss)) self.logger.info("验证集损失函数为:{}".format(val_loss)) return model def predict(self, test_x, batch_size=1): result = self.model.predict(test_x, batch_size=batch_size) self.logger.info("执行预测方法") return result if __name__ == "__main__": run_code = 0