|
@@ -0,0 +1,375 @@
|
|
|
+2025-05-26 09:10:54,470 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:12:03,996 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:12:46,560 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:13:35,837 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:15:14,753 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:15:43,984 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:18:39,622 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:19:09,611 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:19:09,724 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
|
|
|
+2025-05-26 09:20:01,910 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:20:24,979 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
|
|
|
+2025-05-26 09:20:38,240 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:20:38,353 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
|
|
|
+2025-05-26 09:20:40,863 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:20:43,657 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:20:43,660 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:20:43,772 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
|
|
|
+2025-05-26 09:20:43,772 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
|
|
|
+2025-05-26 09:20:44,370 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
|
|
|
+2025-05-26 09:26:46,082 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:27:10,262 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
|
|
|
+2025-05-26 09:27:34,736 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:28:17,447 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:28:17,451 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:28:17,831 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
|
|
|
+2025-05-26 09:28:17,832 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
|
|
|
+2025-05-26 09:35:28,332 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:35:34,654 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
|
|
|
+2025-05-26 09:36:04,560 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:36:12,678 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
|
|
|
+2025-05-26 09:41:05,002 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:41:11,193 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
|
|
|
+2025-05-26 09:41:44,865 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:41:51,449 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
|
|
|
+2025-05-26 09:46:40,350 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:47:08,760 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
|
|
|
+2025-05-26 09:47:48,682 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:47:48,799 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
|
|
|
+2025-05-26 09:47:48,799 - main.py - INFO - 执行脚本路径: E:\compete\app\model\main.py - main
|
|
|
+2025-05-26 09:47:51,328 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:47:54,140 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:47:54,143 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 09:47:54,265 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
|
|
|
+2025-05-26 09:47:54,265 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
|
|
|
+2025-05-26 09:47:54,895 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
|
|
|
+2025-05-26 10:33:44,175 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:38:28,394 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:38:40,146 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
|
|
|
+2025-05-26 10:40:16,560 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:40:55,718 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
|
|
|
+2025-05-26 10:41:24,424 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:43:53,243 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:43:53,532 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:43:53,622 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
|
|
|
+2025-05-26 10:43:53,622 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
|
|
|
+2025-05-26 10:45:38,015 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:45:38,143 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
|
|
|
+2025-05-26 10:45:40,780 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:45:43,622 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:45:43,622 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:45:43,733 - task_worker.py - ERROR - Station 1086 failed: 'NoneType' object has no attribute 'nwp' - station_task
|
|
|
+2025-05-26 10:45:43,733 - task_worker.py - ERROR - Station 2361 failed: 'NoneType' object has no attribute 'nwp' - station_task
|
|
|
+2025-05-26 10:45:44,346 - task_worker.py - ERROR - Area -99 failed: 'NoneType' object has no attribute 'area_id' - region_task
|
|
|
+2025-05-26 10:48:52,987 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:48:53,102 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
|
|
|
+2025-05-26 10:48:55,608 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:48:58,429 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:48:58,433 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:48:58,709 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
|
|
|
+2025-05-26 10:48:58,733 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
+2025-05-26 10:48:58,734 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
+2025-05-26 10:48:58,741 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
|
|
|
+2025-05-26 10:48:58,742 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
|
|
|
+2025-05-26 10:48:58,779 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
+2025-05-26 10:48:58,779 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
+2025-05-26 10:48:58,779 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
+2025-05-26 10:48:58,779 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
+2025-05-26 10:48:58,780 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
+2025-05-26 10:48:58,780 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
+2025-05-26 10:48:59,746 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
+2025-05-26 10:48:59,746 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
+2025-05-26 10:48:59,747 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
+2025-05-26 10:48:59,747 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
+2025-05-26 10:49:12,523 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
+2025-05-26 10:49:12,524 - tf_lstm.py - INFO - 训练集损失函数为:[8.9447e-01 3.1291e-01 9.6900e-02 2.6540e-02 6.4300e-03 1.4200e-03
|
|
|
+ 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
|
|
|
+ 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
|
|
|
+2025-05-26 10:49:12,524 - tf_lstm.py - INFO - 训练集损失函数为:[9.0170e-01 3.1713e-01 9.9050e-02 2.7600e-02 7.0700e-03 1.9400e-03
|
|
|
+ 8.1000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
|
|
|
+ 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
+ 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
|
|
|
+2025-05-26 10:49:12,524 - tf_lstm.py - INFO - 验证集损失函数为:[5.0590e-01 1.6401e-01 4.7160e-02 1.1950e-02 2.7200e-03 6.1000e-04
|
|
|
+ 1.7000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
+ 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
|
|
|
+2025-05-26 10:49:12,524 - tf_lstm.py - INFO - 验证集损失函数为:[0.51183 0.16731 0.04894 0.01308 0.00363 0.00145 0.001 0.00092 0.0009
|
|
|
+ 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
|
|
|
+ 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
|
|
|
+ 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
|
|
|
+ 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
|
|
|
+ 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
+ 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
+ 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
+ 0.00082] - training
|
|
|
+2025-05-26 10:49:12,642 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d6a876c6370eb176b800 - insert_trained_model_into_mongo
|
|
|
+2025-05-26 10:49:12,645 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d6a88a9ccd464b193ac6 - insert_trained_model_into_mongo
|
|
|
+2025-05-26 10:49:12,664 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d6a88a9ccd464b193ac8 - insert_scaler_model_into_mongo
|
|
|
+2025-05-26 10:49:12,673 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d6a876c6370eb176b802 - insert_scaler_model_into_mongo
|
|
|
+2025-05-26 10:49:13,994 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
|
|
|
+2025-05-26 10:49:14,012 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
+2025-05-26 10:49:14,019 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
|
|
|
+2025-05-26 10:49:14,046 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
+2025-05-26 10:49:14,046 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
+2025-05-26 10:49:14,046 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
+2025-05-26 10:49:14,961 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
+2025-05-26 10:49:14,962 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
+2025-05-26 10:49:26,513 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
+2025-05-26 10:49:26,514 - tf_lstm.py - INFO - 训练集损失函数为:[9.0123e-01 3.1717e-01 9.8830e-02 2.7190e-02 6.5700e-03 1.4100e-03
|
|
|
+ 2.7000e-04 5.0000e-05 1.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
|
|
|
+2025-05-26 10:49:26,514 - tf_lstm.py - INFO - 验证集损失函数为:[5.1155e-01 1.6690e-01 4.8240e-02 1.2230e-02 2.7300e-03 5.4000e-04
|
|
|
+ 1.0000e-04 2.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
|
|
|
+2025-05-26 10:49:26,589 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d6b6407675b5bca4c083 - insert_trained_model_into_mongo
|
|
|
+2025-05-26 10:49:26,626 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d6b6407675b5bca4c085 - insert_scaler_model_into_mongo
|
|
|
+2025-05-26 10:55:40,499 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:55:40,612 - main.py - INFO - 输入文件目录: 62/1002/2025-04-21/IN - main
|
|
|
+2025-05-26 10:55:43,103 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:55:45,883 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:55:45,885 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
+2025-05-26 10:55:46,085 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
|
|
|
+2025-05-26 10:55:46,086 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
|
|
|
+2025-05-26 10:55:46,104 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
+2025-05-26 10:55:46,105 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
+2025-05-26 10:55:46,111 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
|
|
|
+2025-05-26 10:55:46,112 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
|
|
|
+2025-05-26 10:55:46,139 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
+2025-05-26 10:55:46,139 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
+2025-05-26 10:55:46,139 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
+2025-05-26 10:55:46,140 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
+2025-05-26 10:55:46,140 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
+2025-05-26 10:55:46,141 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
+2025-05-26 10:55:47,068 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
+2025-05-26 10:55:47,068 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
+2025-05-26 10:55:47,068 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
+2025-05-26 10:55:47,068 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
+2025-05-26 10:55:59,678 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
+2025-05-26 10:55:59,678 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
+2025-05-26 10:55:59,678 - tf_lstm.py - INFO - 训练集损失函数为:[9.0739e-01 3.1934e-01 9.9630e-02 2.7470e-02 6.6900e-03 1.4800e-03
|
|
|
+ 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
|
|
|
+ 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
|
|
|
+2025-05-26 10:55:59,678 - tf_lstm.py - INFO - 训练集损失函数为:[9.0427e-01 3.1717e-01 9.8750e-02 2.7500e-02 7.0700e-03 1.9500e-03
|
|
|
+ 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
|
|
|
+ 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
+ 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
+ 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
|
|
|
+2025-05-26 10:55:59,679 - tf_lstm.py - INFO - 验证集损失函数为:[5.1485e-01 1.6816e-01 4.8690e-02 1.2410e-02 2.8400e-03 6.3000e-04
|
|
|
+ 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
|
|
|
+2025-05-26 10:55:59,679 - tf_lstm.py - INFO - 验证集损失函数为:[0.51265 0.16698 0.04873 0.01305 0.00364 0.00146 0.001 0.00092 0.0009
|
|
|
+ 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
|
|
|
+ 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
|
|
|
+ 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
|
|
|
+ 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
|
|
|
+ 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
+ 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
+ 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
+ 0.00083 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
+ 0.00082] - training
|
|
|
+2025-05-26 10:55:59,716 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d83f6162e6249af02c4c - insert_trained_model_into_mongo
|
|
|
+2025-05-26 10:55:59,716 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d83f7a77586f9dc561a2 - insert_trained_model_into_mongo
|
|
|
+2025-05-26 10:55:59,723 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d83f7a77586f9dc561a4 - insert_scaler_model_into_mongo
|
|
|
+2025-05-26 10:55:59,759 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d83f6162e6249af02c4e - insert_scaler_model_into_mongo
|
|
|
+2025-05-26 10:56:01,061 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
|
|
|
+2025-05-26 10:56:01,078 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
+2025-05-26 10:56:01,087 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
|
|
|
+2025-05-26 10:56:01,112 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
+2025-05-26 10:56:01,112 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
+2025-05-26 10:56:01,113 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
+2025-05-26 10:56:02,019 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
+2025-05-26 10:56:02,019 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
+2025-05-26 10:56:13,741 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
+2025-05-26 10:56:13,742 - tf_lstm.py - INFO - 训练集损失函数为:[8.9571e-01 3.1434e-01 9.7760e-02 2.6850e-02 6.4800e-03 1.3800e-03
|
|
|
+ 2.6000e-04 5.0000e-05 1.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
|
|
|
+2025-05-26 10:56:13,742 - tf_lstm.py - INFO - 验证集损失函数为:[5.0752e-01 1.6519e-01 4.7670e-02 1.2060e-02 2.6900e-03 5.3000e-04
|
|
|
+ 9.0000e-05 2.0000e-05 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
|
|
|
+ 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00] - training
|
|
|
+2025-05-26 10:56:13,779 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 6833d84d8a59ed23c934ddf3 - insert_trained_model_into_mongo
|
|
|
+2025-05-26 10:56:13,800 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 6833d84d8a59ed23c934ddf5 - insert_scaler_model_into_mongo
|