|
@@ -1320,3 +1320,632 @@
|
|
2025-05-22 16:25:18,562 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682edf6e4f4d66c1538080fe - insert_scaler_model_into_mongo
|
|
2025-05-22 16:25:18,562 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682edf6e4f4d66c1538080fe - insert_scaler_model_into_mongo
|
|
2025-05-22 16:25:18,564 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682edf6ee396be238e929ca2 - insert_trained_model_into_mongo
|
|
2025-05-22 16:25:18,564 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682edf6ee396be238e929ca2 - insert_trained_model_into_mongo
|
|
2025-05-22 16:25:18,576 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682edf6ee396be238e929ca4 - insert_scaler_model_into_mongo
|
|
2025-05-22 16:25:18,576 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682edf6ee396be238e929ca4 - insert_scaler_model_into_mongo
|
|
|
|
+2025-05-22 16:36:42,098 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:37:06,300 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
|
|
|
|
+2025-05-22 16:37:29,931 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:37:56,059 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:37:56,060 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:37:56,556 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
|
|
|
|
+2025-05-22 16:37:56,556 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
|
|
|
|
+2025-05-22 16:37:56,578 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
|
+2025-05-22 16:37:56,578 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
|
+2025-05-22 16:37:56,606 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
|
|
|
|
+2025-05-22 16:37:56,606 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
|
|
|
|
+2025-05-22 16:37:56,647 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:37:56,647 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:37:56,647 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:37:56,649 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
|
+2025-05-22 16:37:56,649 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
|
+2025-05-22 16:37:58,554 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
|
+2025-05-22 16:37:58,554 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
|
+2025-05-22 16:37:58,580 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
|
+2025-05-22 16:37:58,580 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
|
+2025-05-22 16:38:35,605 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
|
+2025-05-22 16:38:35,605 - tf_lstm.py - INFO - 训练集损失函数为:[9.0578e-01 3.1937e-01 1.0006e-01 2.7970e-02 7.1800e-03 1.9700e-03
|
|
|
|
+ 8.2000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
|
|
|
|
+ 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
|
|
|
|
+2025-05-22 16:38:35,606 - tf_lstm.py - INFO - 验证集损失函数为:[0.51488 0.16886 0.04954 0.01328 0.00368 0.00146 0.001 0.00092 0.0009
|
|
|
|
+ 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
|
|
|
|
+ 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
|
|
|
|
+ 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084
|
|
|
|
+ 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
|
|
|
|
+ 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
|
+ 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
|
+ 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082
|
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082] - training
|
|
|
|
+2025-05-22 16:38:35,635 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
|
+2025-05-22 16:38:35,635 - tf_lstm.py - INFO - 训练集损失函数为:[8.9900e-01 3.1653e-01 9.8870e-02 2.7350e-02 6.6900e-03 1.4900e-03
|
|
|
|
+ 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
|
|
|
|
+ 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
|
|
|
|
+2025-05-22 16:38:35,636 - tf_lstm.py - INFO - 验证集损失函数为:[5.1022e-01 1.6676e-01 4.8400e-02 1.2390e-02 2.8500e-03 6.4000e-04
|
|
|
|
+ 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
|
|
|
|
+2025-05-22 16:38:35,708 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee28b27b5da75067d35a8 - insert_trained_model_into_mongo
|
|
|
|
+2025-05-22 16:38:35,719 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee28b7a38bab92a0a5a3a - insert_trained_model_into_mongo
|
|
|
|
+2025-05-22 16:38:35,731 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee28b7a38bab92a0a5a3c - insert_scaler_model_into_mongo
|
|
|
|
+2025-05-22 16:38:35,741 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee28b27b5da75067d35aa - insert_scaler_model_into_mongo
|
|
|
|
+2025-05-22 16:41:06,720 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:41:06,848 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
|
|
|
|
+2025-05-22 16:41:09,615 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:41:36,827 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:41:52,435 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
|
|
|
|
+2025-05-22 16:42:15,970 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:42:47,697 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:42:47,703 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:42:48,195 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
|
|
|
|
+2025-05-22 16:42:48,200 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
|
|
|
|
+2025-05-22 16:42:48,218 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
|
+2025-05-22 16:42:48,221 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
|
+2025-05-22 16:42:48,246 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
|
|
|
|
+2025-05-22 16:42:48,249 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
|
|
|
|
+2025-05-22 16:42:48,289 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:42:48,289 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:42:48,291 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
|
+2025-05-22 16:42:48,291 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:42:48,291 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:42:48,293 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
|
+2025-05-22 16:42:50,221 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
|
+2025-05-22 16:42:50,222 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
|
+2025-05-22 16:42:50,251 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
|
+2025-05-22 16:42:50,251 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
|
+2025-05-22 16:43:27,237 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
|
+2025-05-22 16:43:27,238 - tf_lstm.py - INFO - 训练集损失函数为:[8.9134e-01 3.1183e-01 9.6960e-02 2.7010e-02 6.9500e-03 1.9300e-03
|
|
|
|
+ 8.1000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
|
|
|
|
+ 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
|
|
|
|
+2025-05-22 16:43:27,238 - tf_lstm.py - INFO - 验证集损失函数为:[0.50446 0.16402 0.04786 0.01284 0.0036 0.00145 0.00101 0.00092 0.0009
|
|
|
|
+ 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
|
|
|
|
+ 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
|
|
|
|
+ 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
|
|
|
|
+ 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
|
|
|
|
+ 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
|
+ 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
|
+ 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082] - training
|
|
|
|
+2025-05-22 16:43:27,314 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
|
+2025-05-22 16:43:27,314 - tf_lstm.py - INFO - 训练集损失函数为:[8.9997e-01 3.1582e-01 9.7960e-02 2.6850e-02 6.5100e-03 1.4400e-03
|
|
|
|
+ 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
|
|
|
|
+ 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
|
|
|
|
+2025-05-22 16:43:27,314 - tf_lstm.py - INFO - 验证集损失函数为:[5.1007e-01 1.6575e-01 4.7690e-02 1.2090e-02 2.7600e-03 6.1000e-04
|
|
|
|
+ 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
|
|
|
|
+2025-05-22 16:43:27,336 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee3afa37ce5e300dffc58 - insert_trained_model_into_mongo
|
|
|
|
+2025-05-22 16:43:27,385 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee3afa37ce5e300dffc5a - insert_scaler_model_into_mongo
|
|
|
|
+2025-05-22 16:43:27,429 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee3afded77197474391d7 - insert_trained_model_into_mongo
|
|
|
|
+2025-05-22 16:43:27,441 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee3afded77197474391d9 - insert_scaler_model_into_mongo
|
|
|
|
+2025-05-22 16:45:43,854 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
|
|
|
|
+2025-05-22 16:46:18,805 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:46:21,969 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
|
|
|
|
+2025-05-22 16:46:46,365 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:47:14,361 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:47:14,373 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:47:15,097 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
|
|
|
|
+2025-05-22 16:47:15,100 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
|
|
|
|
+2025-05-22 16:47:15,135 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
|
+2025-05-22 16:47:15,136 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
|
+2025-05-22 16:47:15,169 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
|
|
|
|
+2025-05-22 16:47:15,173 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
|
|
|
|
+2025-05-22 16:47:15,235 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:47:15,235 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:47:15,239 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
|
+2025-05-22 16:47:15,241 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:47:15,241 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:47:15,244 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
|
+2025-05-22 16:47:17,702 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
|
+2025-05-22 16:47:17,703 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
|
+2025-05-22 16:47:17,719 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
|
+2025-05-22 16:47:17,720 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
|
+2025-05-22 16:47:59,223 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
|
+2025-05-22 16:47:59,223 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
|
+2025-05-22 16:47:59,223 - tf_lstm.py - INFO - 训练集损失函数为:[9.0682e-01 3.1992e-01 1.0042e-01 2.8180e-02 7.2700e-03 2.0000e-03
|
|
|
|
+ 8.3000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
|
|
|
|
+ 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
|
|
|
|
+2025-05-22 16:47:59,223 - tf_lstm.py - INFO - 训练集损失函数为:[9.0271e-01 3.1676e-01 9.8510e-02 2.7120e-02 6.6000e-03 1.4600e-03
|
|
|
|
+ 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
|
|
|
|
+ 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
|
|
|
|
+2025-05-22 16:47:59,224 - tf_lstm.py - INFO - 验证集损失函数为:[0.51566 0.1692 0.04981 0.0134 0.00373 0.00148 0.00101 0.00092 0.0009
|
|
|
|
+ 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
|
|
|
|
+ 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085 0.00085
|
|
|
|
+ 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084 0.00084
|
|
|
|
+ 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
|
|
|
|
+ 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
|
+ 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
|
+ 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082] - training
|
|
|
|
+2025-05-22 16:47:59,224 - tf_lstm.py - INFO - 验证集损失函数为:[5.1142e-01 1.6643e-01 4.8090e-02 1.2250e-02 2.8000e-03 6.2000e-04
|
|
|
|
+ 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
|
|
|
|
+2025-05-22 16:47:59,336 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee4bf35eeabaeac48dbca - insert_trained_model_into_mongo
|
|
|
|
+2025-05-22 16:47:59,349 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee4bf35eeabaeac48dbcc - insert_scaler_model_into_mongo
|
|
|
|
+2025-05-22 16:47:59,372 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee4bf9324837aabe55d44 - insert_scaler_model_into_mongo
|
|
|
|
+2025-05-22 16:51:53,965 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:51:54,086 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
|
|
|
|
+2025-05-22 16:51:56,677 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:51:59,595 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:51:59,599 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:51:59,803 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
|
|
|
|
+2025-05-22 16:51:59,821 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
|
+2025-05-22 16:51:59,829 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
|
|
|
|
+2025-05-22 16:51:59,829 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
|
|
|
|
+2025-05-22 16:51:59,857 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:51:59,857 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:51:59,858 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:51:59,858 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:51:59,858 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
|
+2025-05-22 16:51:59,859 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
|
+2025-05-22 16:52:00,807 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
|
+2025-05-22 16:52:00,807 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
|
+2025-05-22 16:52:00,816 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
|
+2025-05-22 16:52:00,816 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
|
+2025-05-22 16:52:13,882 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
|
+2025-05-22 16:52:13,883 - tf_lstm.py - INFO - 训练集损失函数为:[9.0366e-01 3.1743e-01 9.8920e-02 2.7540e-02 7.0700e-03 1.9500e-03
|
|
|
|
+ 8.2000e-04 6.0000e-04 5.5000e-04 5.5000e-04 5.4000e-04 5.4000e-04
|
|
|
|
+ 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
|
|
|
|
+2025-05-22 16:52:13,883 - tf_lstm.py - INFO - 验证集损失函数为:[0.51271 0.16722 0.0488 0.01307 0.00364 0.00146 0.00101 0.00092 0.0009
|
|
|
|
+ 0.0009 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087 0.00087
|
|
|
|
+ 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086
|
|
|
|
+ 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085
|
|
|
|
+ 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
|
|
|
|
+ 0.00084 0.00084 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083
|
|
|
|
+ 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
|
+ 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
|
+ 0.00083 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082] - training
|
|
|
|
+2025-05-22 16:52:13,924 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee5bde140b01fd24f34ff - insert_trained_model_into_mongo
|
|
|
|
+2025-05-22 16:52:13,932 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee5bde140b01fd24f3501 - insert_scaler_model_into_mongo
|
|
|
|
+2025-05-22 16:52:13,956 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
|
+2025-05-22 16:52:13,957 - tf_lstm.py - INFO - 训练集损失函数为:[8.9291e-01 3.1420e-01 9.8070e-02 2.7090e-02 6.6100e-03 1.4600e-03
|
|
|
|
+ 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
|
|
|
|
+ 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
|
|
|
|
+2025-05-22 16:52:13,957 - tf_lstm.py - INFO - 验证集损失函数为:[5.0656e-01 1.6547e-01 4.7970e-02 1.2260e-02 2.8100e-03 6.3000e-04
|
|
|
|
+ 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
|
|
|
|
+2025-05-22 16:52:13,993 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee5bdd1747a06d97e0ef3 - insert_trained_model_into_mongo
|
|
|
|
+2025-05-22 16:52:14,030 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee5bed1747a06d97e0ef5 - insert_scaler_model_into_mongo
|
|
|
|
+2025-05-22 16:52:15,315 - task_worker.py - ERROR - Area 1002 failed: 'Datetime' - region_task
|
|
|
|
+2025-05-22 16:54:08,472 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:54:12,196 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
|
|
|
|
+2025-05-22 16:54:36,162 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:55:09,151 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:55:09,153 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 16:55:09,901 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
|
|
|
|
+2025-05-22 16:55:09,941 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
|
+2025-05-22 16:55:09,941 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
|
+2025-05-22 16:55:09,977 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
|
|
|
|
+2025-05-22 16:55:10,026 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:55:10,027 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:55:10,027 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:55:10,027 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
|
+2025-05-22 16:55:10,029 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
|
+2025-05-22 16:55:10,029 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
|
+2025-05-22 16:55:12,772 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
|
+2025-05-22 16:55:12,773 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
|
+2025-05-22 16:55:12,785 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
|
+2025-05-22 16:55:12,785 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
|
+2025-05-22 16:56:01,718 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
|
+2025-05-22 16:56:01,720 - tf_lstm.py - INFO - 训练集损失函数为:[9.0185e-01 3.1664e-01 9.8400e-02 2.7020e-02 6.5600e-03 1.4500e-03
|
|
|
|
+ 3.2000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
|
|
|
|
+ 6.0000e-05 6.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
|
|
|
|
+2025-05-22 16:56:01,720 - tf_lstm.py - INFO - 训练集损失函数为:[9.0446e-01 3.1836e-01 9.9350e-02 2.7650e-02 7.0800e-03 1.9400e-03
|
|
|
|
+ 8.1000e-04 5.9000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
|
|
|
|
+ 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
|
|
|
|
+2025-05-22 16:56:01,720 - tf_lstm.py - INFO - 验证集损失函数为:[5.1114e-01 1.6636e-01 4.7960e-02 1.2180e-02 2.7800e-03 6.2000e-04
|
|
|
|
+ 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
|
|
|
|
+2025-05-22 16:56:01,720 - tf_lstm.py - INFO - 验证集损失函数为:[0.51384 0.16792 0.04904 0.0131 0.00363 0.00145 0.001 0.00092 0.0009
|
|
|
|
+ 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087 0.00087
|
|
|
|
+ 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085 0.00085
|
|
|
|
+ 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084 0.00084
|
|
|
|
+ 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
|
|
|
|
+ 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
|
+ 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
|
+ 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082 0.00082
|
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082] - training
|
|
|
|
+2025-05-22 16:56:01,831 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee6a10749b0ee0fe21ed9 - insert_trained_model_into_mongo
|
|
|
|
+2025-05-22 16:56:01,843 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee6a10749b0ee0fe21edb - insert_scaler_model_into_mongo
|
|
|
|
+2025-05-22 16:56:01,864 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682ee6a13f317b0620e79546 - insert_trained_model_into_mongo
|
|
|
|
+2025-05-22 16:56:01,899 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682ee6a13f317b0620e79548 - insert_scaler_model_into_mongo
|
|
|
|
+2025-05-22 18:30:17,846 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 18:30:17,971 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
|
|
|
|
+2025-05-22 18:30:20,914 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 18:30:24,052 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 18:30:24,054 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 18:30:24,282 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
|
|
|
|
+2025-05-22 18:30:24,299 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
|
+2025-05-22 18:30:24,300 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
|
+2025-05-22 18:30:24,308 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
|
|
|
|
+2025-05-22 18:30:24,308 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
|
|
|
|
+2025-05-22 18:30:24,335 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
|
+2025-05-22 18:30:24,335 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
|
+2025-05-22 18:30:24,335 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
|
+2025-05-22 18:30:24,335 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
|
+2025-05-22 18:30:24,336 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
|
+2025-05-22 18:30:24,336 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
|
+2025-05-22 18:30:25,304 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
|
+2025-05-22 18:30:25,304 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
|
+2025-05-22 18:30:25,304 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
|
+2025-05-22 18:30:25,305 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
|
+2025-05-22 18:30:39,377 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
|
+2025-05-22 18:30:39,377 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
|
+2025-05-22 18:30:39,377 - tf_lstm.py - INFO - 训练集损失函数为:[9.0965e-01 3.2084e-01 1.0057e-01 2.8150e-02 7.2500e-03 1.9900e-03
|
|
|
|
+ 8.3000e-04 6.0000e-04 5.5000e-04 5.4000e-04 5.4000e-04 5.4000e-04
|
|
|
|
+ 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
|
|
|
|
+2025-05-22 18:30:39,377 - tf_lstm.py - INFO - 训练集损失函数为:[9.0351e-01 3.1783e-01 9.9160e-02 2.7360e-02 6.6700e-03 1.4700e-03
|
|
|
|
+ 3.3000e-04 1.0000e-04 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
|
|
|
|
+ 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05 6.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05
|
|
|
|
+ 5.0000e-05 5.0000e-05 5.0000e-05 5.0000e-05] - training
|
|
|
|
+2025-05-22 18:30:39,378 - tf_lstm.py - INFO - 验证集损失函数为:[0.51728 0.16966 0.04982 0.01337 0.00372 0.00148 0.00101 0.00092 0.0009
|
|
|
|
+ 0.00089 0.00089 0.00089 0.00088 0.00088 0.00088 0.00087 0.00087 0.00087
|
|
|
|
+ 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00086 0.00086 0.00085
|
|
|
|
+ 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00085 0.00084
|
|
|
|
+ 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084 0.00084
|
|
|
|
+ 0.00084 0.00084 0.00084 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
|
+ 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083
|
|
|
|
+ 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00083 0.00082
|
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082
|
|
|
|
+ 0.00082] - training
|
|
|
|
+2025-05-22 18:30:39,378 - tf_lstm.py - INFO - 验证集损失函数为:[5.1250e-01 1.6734e-01 4.8480e-02 1.2370e-02 2.8300e-03 6.3000e-04
|
|
|
|
+ 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
|
|
|
|
+2025-05-22 18:30:39,422 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682efccfd9cdd24a561b9430 - insert_trained_model_into_mongo
|
|
|
|
+2025-05-22 18:30:39,444 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682efccf11d24a1b0567e1cd - insert_trained_model_into_mongo
|
|
|
|
+2025-05-22 18:30:39,447 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682efccfd9cdd24a561b9432 - insert_scaler_model_into_mongo
|
|
|
|
+2025-05-22 18:30:39,452 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682efccf11d24a1b0567e1cf - insert_scaler_model_into_mongo
|
|
|
|
+2025-05-22 18:35:43,479 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 18:35:43,599 - main.py - INFO - 输入文件目录: E:/compete/app/model/data/DQYC/qy/62/1002/2025-04-21/IN - main
|
|
|
|
+2025-05-22 18:35:46,348 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 18:35:49,304 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 18:35:49,313 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
|
|
|
|
+ - _tfmw_add_deprecation_warning
|
|
|
|
+2025-05-22 18:35:49,509 - tf_model_train.py - INFO - GPU 2 allocated - _setup_resources
|
|
|
|
+2025-05-22 18:35:49,518 - tf_model_train.py - INFO - GPU 1 allocated - _setup_resources
|
|
|
|
+2025-05-22 18:35:49,527 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
|
+2025-05-22 18:35:49,535 - data_cleaning.py - INFO - 行清洗:清洗的行数有:69,缺失的列有: - key_field_row_cleaning
|
|
|
|
+2025-05-22 18:35:49,536 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
|
|
|
|
+2025-05-22 18:35:49,545 - data_cleaning.py - INFO - 行清洗:清洗的行数有:68,缺失的列有: - key_field_row_cleaning
|
|
|
|
+2025-05-22 18:35:49,563 - data_handler.py - INFO - 数据总数:2907, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
|
+2025-05-22 18:35:49,563 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
|
+2025-05-22 18:35:49,564 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
|
+2025-05-22 18:35:49,572 - data_handler.py - INFO - 数据总数:2908, 时序缺失的间隔:0, 其中,较长的时间间隔:0 - missing_time_splite
|
|
|
|
+2025-05-22 18:35:49,572 - data_handler.py - INFO - 需要补值的总点数:0 - missing_time_splite
|
|
|
|
+2025-05-22 18:35:49,573 - data_handler.py - INFO - 再次测算,需要插值的总点数为:0.0 - fill_train_data
|
|
|
|
+2025-05-22 18:35:50,543 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
|
+2025-05-22 18:35:50,543 - dbmg.py - INFO - ⚠️ 未找到模型 'lstm' 的有效记录 - get_keras_model_from_mongo
|
|
|
|
+2025-05-22 18:35:50,543 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
|
+2025-05-22 18:35:50,543 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
|
|
|
|
+2025-05-22 18:36:05,459 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
|
+2025-05-22 18:36:05,459 - tf_lstm.py - INFO - -----模型训练经过100轮迭代----- - training
|
|
|
|
+2025-05-22 18:36:05,460 - tf_lstm.py - INFO - 训练集损失函数为:[9.0471e-01 3.1927e-01 1.0005e-01 2.7970e-02 7.1900e-03 1.9800e-03
|
|
|
|
+ 8.3000e-04 6.0000e-04 5.5000e-04 5.5000e-04 5.4000e-04 5.4000e-04
|
|
|
|
+ 5.4000e-04 5.4000e-04 5.4000e-04 5.4000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04 5.3000e-04
|
|
|
|
+ 5.3000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04
|
|
|
|
+ 5.2000e-04 5.2000e-04 5.2000e-04 5.2000e-04 5.1000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04
|
|
|
|
+ 5.1000e-04 5.1000e-04 5.1000e-04 5.1000e-04] - training
|
|
|
|
+2025-05-22 18:36:05,460 - tf_lstm.py - INFO - 验证集损失函数为:[5.1764e-01 1.6935e-01 4.9040e-02 1.2470e-02 2.8400e-03 6.3000e-04
|
|
|
|
+ 1.8000e-04 1.0000e-04 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05 8.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05
|
|
|
|
+ 7.0000e-05 7.0000e-05 7.0000e-05 7.0000e-05] - training
|
|
|
|
+2025-05-22 18:36:05,514 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682efe15d416e8f832fd0f55 - insert_trained_model_into_mongo
|
|
|
|
+2025-05-22 18:36:05,514 - dbmg.py - INFO - ✅ 模型 lstm 保存成功 | 文档ID: 682efe155dc17e5973916862 - insert_trained_model_into_mongo
|
|
|
|
+2025-05-22 18:36:05,546 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682efe155dc17e5973916864 - insert_scaler_model_into_mongo
|
|
|
|
+2025-05-22 18:36:05,561 - dbmg.py - INFO - ✅ 缩放器 lstm 保存成功 | 文档ID: 682efe15d416e8f832fd0f57 - insert_scaler_model_into_mongo
|
|
|
|
+2025-05-22 18:36:06,898 - task_worker.py - ERROR - Area 1002 failed: 'types.SimpleNamespace' object has no attribute 'cap' - region_task
|